Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Freestanding Film Made by Necklace-like N-doped Hollow Carbon with Hierarchical Pores for High-performance Potassium-Ion Storage

Wenxiu Yang^a[†], Jinhui Zhou^a[†], Shuo Wang^a, Weiyu Zhang^a, Zichen Wang^a, Fan Lv^a, Kai Wang^a, Qiang Sun^a, and Shaojun Guo^{a, b, c} *

^a.Department of Materials Science & Engineering, College of Engineering, Peking University, Beijing, 100871, China. E-mail: guosj@pku.edu.cn

^bBIC-ESAT, College of Engineering, Peking University, Beijing, 100871, China.

^cDepartment of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China.

[†]*These authors contributed equally to this work.*

Figure S1 TEM image and XRD pattern of the ZnO nanospheres.

Figure S2 SEM images of *u*-NHC_{x/y} made with different precursor proportions (ZnO:PAN): (a) 1:3, (b) 1:2, (c) 2:3, (d) 1:1, (e) 2:1 and (f) 3:1.

Figure S3 TEM images of (a) NHC_{1/2}-NH₃/Ar and (b) NHC₁-NH₃/Ar.

Figure S4 (a-c) SEM and (d-f) TEM images of NHC pyrolyzed at different temperature in Ar atmosphere: (a, d) NHC₂-Ar-600, (b, e) NHC₂-Ar-700 and (c, f) NHC₂-Ar-800.

Figure S5 XRD patterns of the NHC materials: a (NHC₂-Ar-600), b (NHC₂-Ar-700), c (NHC₂-Ar-800), d (NHC₂-Ar-900), e (NHC_{1/2}-NH₃/Ar), e (NHC₁-NH₃/Ar) and g (NHC₂-NH₃/Ar).

Figure S6 XPS spectra of different NHC materials.

Figure S7 High-resolution XPS spectra of NHC_2 - NH_3 /Ar. (a) C_{1s} and (b) O_{1s} .

Figure S8 Nitrogen adsorption-desorption isotherms of the NHC materials.

Figure S9 Raman spetra of the NHC materials.

Figure S10 (a, b) Photographs of the NHC₂-NH₃/Ar.

Figure S11. Potassiation and depotassiation profiles of the NHC_2-NH_3/Ar electrode for the first cycle at 100 mA/g.

Figure S12. The 2nd, 5th, 10th, 20th, 50th, 100th and 200th potassiation and depotassiation profiles of the series of NHCFs materials at the current density of 100 mA/g: (a) NHC₁-NH₃/Ar, (b) NHC₂-Ar-800, (c) NHC₂-Ar-900 and (d) PAN-NH₃/Ar.

Figure S13. Cyclic voltammetry (CV) of the NHC₂-NH₃/Ar electrode for PIBs between 0.01 V and 2.5 V with a scan rate of 0.1 mV/s.

Figure S14. The potassiation and depotassiation profiles of the NHC_2-NH_3/Ar electrode at different current densities from 50 to 2000 mA/g.

Figure S15. The cycles of the NHC_2-NH_3/Ar electrode measured under different current densities of 200, 500 and 1000 mA/g.

Figure S16. Digital photograph of NHC₂-NH₃/Ar electrode after 1000 cycles

Figure S17. SEM images of the NHC₂-NH₃/Ar electrode after (a) 100 and (b)1000 cycles.

Figure S18. (a) SEM image and (b-f) the EDS mappings of the NHC_2-NH_3/Ar electrode after 100 cycles.

Figure S19. (a) SEM image and (b-f) the EDS mappings of the NHC_2-NH_3/Ar electrode after 1000 cycles.

Figure S20 CV profiles of the series of NHCFs materials at different scan rates: (a) NHC_2-NH_3/Ar , (b) NHC_1-NH_3/Ar , (c) $NHC_2-Ar-800$, (d) $NHC_2-Ar-900$ and (e) $PAN-NH_3/Ar$. (f) Determination of the b-value of NHC_2-NH_3/Ar using the relationship between peak current and scan rate in PIBs.

Figure S21 Theoretical simulations and relative verifications. (a) K atom was absorbed in the pristine carbon structure. Side and top views of electron density differences of K absorbed in the pristine carbon structures. Yellow and blue areas represent increased and decreased electron density, respectively. Brown and purple balls represent C and K atoms, respectively

Materials	C (at. %)	N (at. %)	O (at. %)	N type		BET surface	
				N5 (%)	N6 (%)	NQ(%)	area (m² g ⁻¹)
NHC ₂ -600-Ar	75.77	10.91	10.54	25.1	58.4	16.5	17.1
NHC ₂ -700-Ar	77.71	8.1	11.35	20.0	56.9	23.1	32.3
NHC ₂ -800-Ar	89.96	4.9	4.71	24.5	37.4	38.1	358.5
NHC ₂ -900-Ar	91.74	2.8	5.4	15.1	22.6	62.3	379.7
NHC _{1/2} -NH ₃ /Ar	79.17	10.74	8.24	17.6	56.8	25.6	115.0
NHC ₁ -NH ₃ /Ar	78.18	12.35	6.62	16.2	56.0	27.8	118.6
NHC ₂ -NH ₃ /Ar	78.76	10.71	7.71	22.0	64.0	14.0	355.6

Table S1 Characteristics (XPS and BET surface area) of the different NHC materials.

Table S2. Comparison of electrochemical performance of the NHC₂-NH₃/Ar anode with those reported previously for PIBs.

Materials	Reversible Capacity &	Cycle life	Free-standing	References
	Rate Capability	(capacity (retention proportion @	Electrode	
		cycle number@mA/g))	(YES or NO?)	
NHC ₂ -NH ₃ /Ar	293.5 mAh/g @ 100 mA/g	228.4 mAh/g (82.7 % @ 200 cycles @200 mA/g)	YES	This work
	224 mAh/g @ 1000 mA/g	227.3 mAh/g (82 % @ 500 cycles @200 mA/g)		
		225.4 mAh/g (81 % @ 1000 cycles @200 mA/g)		
		201.4 mAh/g (83.2 % @200 cycles @500 mA/g)		
		192.8 mAh/g (80 % @500 cycles @500 mA/g)		
		184.0 mAh/g (77 % @1000 cycles @500 mA/g)		
		185.4 mAh/g (83.9 % @ 200 cycles @1000 mA/g)		
		172.7 mAh/g (78 % @ 500 cycles @1000 mA/g)		
		161.3 mAh/g (73 % @ 1600 cycles @1000 mA/g)		
RGO	200 mAh/g @ 5 mA/g	150 mAh /g (88.2% @ 175 cycles @ 10 mA/g)	YES	[1]
	50 mAh/g @ 100 mA/g			
MLG	100 mAh/g @ 200 mA/g	95 mAh /g (95%@ 1000 cycles @ 2000 mA/g)	YES	[2]
	80 mAh/g @ 10000 mA/g			
HCNTs	232 mAh /g @ 100 mA/g	210 mAh /g (90% @ 500 cycles @ 100 mA/g)	YES	[3]
	162 mAh /g @ 1600 mA/g			
CNFF	240 mAh /g @ 50 mA/g	158 mAh /g (88% @ 2000 cycles @ 1000 mA/g)	YES	[4]
	164 mAh /g @ 1000 mA/g			
S-RGO	435 mAh /g @ 50 mA/g	229 mAh /g (~76% @ 500 cycles @ 1 A/g)	YES	[5]
	224 mAh /g @ 1 A/g			

N-FLG	350 mAh/g @ 50 mA/g	210 mAh /g (77.8% @ 100 cycles @ 100 mA/g)	YES	[6]
	200 mAh/g @ 100 mA/g			
S/O-PCM	226.6 mAh/g @ 50 mA/g	108.4 mAh/g (69% @ 2000 cycles @ 1000 mA/g)	NO	[7]
	158 mAh/g @ 1000 mA/g			
HINCA	340 mAh/g @ 28 mA/g	~150 mAh/g (75% @ 500 cycles @ 280 mA/g)	NO	[8]
	~120 mAh/g @ 560 mA/g			
NOHPHC	365 mAh/g @ 25 mA/g	230.6 mAh/g (76.1%@ 100 cycles @ 50 mA/g)	NO	[9]
	118 mAh/g @ 3000 mA/ g			
NCNF	238 mAh/g @ 100 mA/g	248 mAh/g (90.8%@100 cycles @ 25 mA/g)	NO	[10]
	126 mAh/g @ 5000 mA/g	146 mAh/g (100% @ 4000 cycles @ 2 A/g)		
HCS-SC	261 mAh/g @ 27.9 mA/g	213.6 mAh/g (89% @ 440 cycles @ 58.8 mA/g)	NO	[11]
	190 mAh/g @ 558 mA/g	195.3 mAh/g (93% @ 200 cycles @ 279 mA/g)		
Soft carbon	273 mAh/g @ 6.975 mA/g	150.6 mAh/g (81.4%@ 50 cycles @ 558 mA/g)	NO	[12]
	140 mAh/g @ 1395 mA/g			
НСМ	250 mAh/g @ 0.028 A/g	216 mAh/g(83 % @ 100 cycles @ 0.028 A/g	NO	[13]
	130 mAh/g @ 1.04 A/g			
amorphous OMC	286.4 mA h/ g @0.05 A/g	146.5 mAh/g(70% @1000 cycles@1 A/g)	NO	[14]
	144.2 mA h/ g @1.0 A/g			
PNCM	388 mA h/ g @50 mA/g	152 mAh/g(67.5% @3000 cycles@1A/g)	NO	[15]
	178 mA h/ g @5000 mA/g			
ТВМС	500 mA h/g @ 0.05 A/g	244 mA h /g (83%@ 200 cycles@ 0.5 A/ g)	NO	[16]
	136 mA h/g @ 2 A/g			
HNPC	419.7 mAh/g @ 50 mA/g	160.5 mAh/g (81.1% @ 1000 cycles @ 5000 mA/g)	NO	[17]
	185.0 mAh/g @ 10000 mA/g			
NPC	587.6 mA h/g @ 50 mA/g	231.6 mA h/g (~77%@ 2000 cycles @ 500 mA/ g)	NO	[18]
	186.2 mA h/g @ 2000 mA/g			
N-CNS	367 mA h/g @ 50 mA/g	225 mA h/g (~70.5%@ 1000 cycles @ 0.5A/ g)	NO	[19]

	168 mA h/g @ 2000 mA/g	151 mA h/g (~75.6%@ 1000 cycles @ 1 A/ g)			
NBCNTs	359 mA h/g @ 100 mA/g	204 mA h/g (@ 1000 cycles @ 0.5A/ g)	NO	[20]	
	186 mA h/g @1000 mA/g				
Note:					
RGO: Reduced graphene oxide					
MLG: multi-layered graphene					
HCNTs: hierarchical carbon nanotube					
CNFF: carbon nanofiber foam					
S-RGO: Sulphur-doped reduced graphene oxide					
N-FLG: N-doped few-	layer graphene				
S/O-PCM: sulfur (S) and oxygen (O) codoped porous hard carbon microspheres					
HINCA: hollow interconnected neuron-like carbon architecture					
NOHPHC: nitrogen/oxygen dual-doped hierarchical porous hard carbon					
NCNF: N-doped carbon nanofibers					
HCS-SC: hard carbon spheres - soft carbon					
HCM: Hard carbon microshperes					
OMC: ordered mesoporous carbon					
PNCM: pyridinic N-doped porous carbon monolith					
TBMC: nanotube-backboned mesoporous carbon					
HNPC: hierarchically nitrogen-doped porous carbon					
NPC: N-doped porous carbon					
N-CNS: Nitrogen dope	ed carbon nanosheets				

NBCNTs: nitrogen-doped bamboo-like carbon nanotubes

Reference:

- W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen, J. Dai, H. Lin, Y. Xu, F. Gu, V. Barone, L. Hu, *Nano Lett.* 2015, 15, 7671-7677.
- [2] A. P. Cohn, N. Muralidharan, R. Carter, K. Share, L. Oakes, C. L. Pint, J. Mater. Chem. A 2016, 4, 14954-14959.
- [3] Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf, H. Wu, M. Zou, A. Cao, R. P. S. Han, Adv. Mater. 2018, 30, 1802074.
- [4] H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang, D. Cao, H. Zhu, Nano Lett. 2018, 18, 7407-7413.
- [5] J. Li, W. Qin, J. Xie, H. Lei, Y. Zhu, W. Huang, X. Xu, Z. Zhao, W. Mai, Nano Energy 2018, 53, 415-424.
- [6] K. Share, A. P. Cohn, R. Carter, B. Rogers, C. L. Pint, ACS Nano 2016, 10, 9738-9744.
- [7] M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, Adv. Energy Mater. 2018, 8, 1800171.
- [8] D.-S. Bin, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, K. Zhang, A.-M. Cao, L.-J. Wan, J. Am. Chem. Soc. 2018, 140, 7127-7134.

- [9] J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Adv. Mater. 2018, 30, 1700104.
- [10] Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Comm. 2018, 9.
- [11] Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su, X. Ji, Adv. Funct. Mater. 2017, 27, 1700324.
- [12] Z. Jian, W. Luo, X. Ji, J. Am. Chem. Soc. 2015, 137, 11566-11569.
- [13] Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Adv. Energy Mater. 2016, 6, 1501874.
- [14] W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Adv. Energy Mater. 2018, 8, 1701648.
- [15] Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen, C. Yan, Adv. Mater. 2017, 29, 1702268.
- [16] D. Liu, X. Huang, D. Qu, D. Zheng, G. Wang, J. Harris, J. Si, T. Ding, J. Chen, D. Qu, Nano Energy 2018, 52, 1-10.
- [17] D. Li, X. Ren, Q. Ai, Q. Sun, L. Zhu, Y. Liu, Z. Liang, R. Peng, P. Si, J. Lou, J. Feng, L. Ci, Adv. Energy Mater. 2018, 1802386.
- [18] Y. Li, C. Yang, F. Zheng, X. Ou, Q. Pan, Y. Liu, G. Wang, J. Mater. Chem. A 2018, 6, 17959-17966.
- [19] L. Liu, Y. Chen, Y. Xie, P. Tao, Q. Li, C. Yan, Adv. Funct. Mater. 2018, 28, 1801989.
- [20] Y. Liu, C. Yang, Q. Pan, Y. Li, G. Wang, X. Ou, F. Zheng, X. Xiong, M. Liu, Q. Zhang, J. Mater. Chem. A 2018, 6, 15162-15169.