

## Supporting Information

### A new family of cation-disordered Zn(Cu)-Si-P compounds as high-performance anodes for next-generation Li-ion batteries

Wenwu Li,<sup>a,b</sup> Xinwei Li,<sup>\*,c</sup> Jun Liao,<sup>a</sup> Bote Zhao,<sup>b</sup> Lei Zhang,<sup>b</sup> Le Huang,<sup>a</sup> Guoping Liu,<sup>a</sup> Zaiping Guo<sup>d</sup> and Meilin Liu<sup>\*,b</sup>

- a. School of Materials and Energy, Guangdong University of Technology, Guangzhou 51006, China.
- b. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- c. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518071, China.
- d. Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, North Wollongong, NSW 2500, Australia.

**Table S1.** Crystallographic parameters and reliability factors for the cation-disordered ZnSiP<sub>2</sub> sample from XRD refinement.

| Compound                  | ZnSiP <sub>2</sub>    |
|---------------------------|-----------------------|
| Sp.Gr.                    | <i>F</i> -43 <i>m</i> |
| <i>a</i> , Å              | 5.34025               |
| <i>V</i> , Å <sup>3</sup> | 152.3                 |
| 2θ-interval, °            | 5-120                 |
| Number of reflections     | 13                    |
| Rwp, %                    | 7.23                  |
| Rp, %                     | 8.9                   |
| Rexp, %                   | 2.67                  |
| $\chi^2$                  | 1.62                  |
| RB, %                     | 1.77                  |

**Table S2.** Fractional atomic coordinates and isotropic displacement parameters (Å<sup>2</sup>) of ZnSiP<sub>2</sub>.

|    | x    | y    | z    | <i>B</i> <sub>iso</sub> | Occ. |
|----|------|------|------|-------------------------|------|
| P  | 0.25 | 0.25 | 0.25 | 1                       | 1    |
| Si | 0    | 0    | 0    | 1                       | 0.5  |
| Zn | 0    | 0    | 0    | 1                       | 0.5  |



**Figure S1.** TEM image and the selected area electron diffraction (SAED) pattern of the cation-disordered ZnSiP<sub>2</sub> powder.



Figure S2. High-resolution TEM image of the cation-disordered  $\text{ZnSiP}_2$ .



Figure S3. Discharge/charge profiles of the cation-disordered  $\text{ZnSiP}_2$ ,  $\text{Zn/C}$ ,  $\text{Si/C}$  and  $\text{P/C}$  electrodes at a current density of  $200 \text{ mA g}^{-1}$ .



Figure S4. The initial anodic scan at different scan rates of the cation-disordered  $\text{ZnSiP}_2$  anodes: black (Electrode 1), the initial anodic scan at a scan rate of  $0.1 \text{ mV s}^{-1}$ . Red (Electrode 2), the initial anodic scan at a scan rate of  $0.02 \text{ mV s}^{-1}$ ; blue (Electrode 2), the 4th anodic scan at a scan rate of  $0.02 \text{ mV s}^{-1}$ .



**Figure S5.** The initial discharge profiles of the ZnSiP<sub>2</sub> anodes cycled at ultralow current density of 20, 40, 80, and 100 mA g<sup>-1</sup>.



**Figure S6.** Initial three discharge/charge profiles of the cation-disordered ZnSiP<sub>2</sub> electrode at a current density of 200 mA g<sup>-1</sup>



**Figure S7.** a) Schematic of the cation-disordered ZnSiP<sub>2</sub> crystal structure (red ball: P atom, gray white ball: Zn atom); b) the electronic structure based on the above model. c) the crystal structure model of the cation-ordered ZnSiP<sub>2</sub>; d) the electronic structure of the cation-ordered ZnSiP<sub>2</sub>.



**Figure S8.** Electrochemical impedance spectroscopy study of a cation-disordered ZnSiP<sub>2</sub> electrode and a cation-ordered ZnSiP<sub>2</sub> electrode: a) impedance spectrum of a cell with a cation-disordered ZnSiP<sub>2</sub> electrode and that with a cation-ordered ZnSiP<sub>2</sub> electrode acquired under identical conditions, and b) charge transfer resistance ( $R_{ct}$ ) determined from the impedance spectra shown in part a).



**Figure S9.** Li-ion diffusion barrier energy and its corresponding diffusion paths calculated based on the simulated model as shown in Figure S5a.



**Figure S10.** Li-ion diffusion barrier energy and its corresponding diffusion paths calculated based on the simulated model as shown in Figure S5c.



**Figure S11.** The cells were executed with a constant pulse for 30 min and then rest for 10 h: a) the initial discharge/charge profile of the cation-disordered ZnSiP<sub>2</sub> and b) the initial discharge/charge profile of the cation-ordered ZnSiP<sub>2</sub>. Li-ion diffusion coefficients of the cation-disordered ZnSiP<sub>2</sub> and cation-ordered ZnSiP<sub>2</sub> anodes during discharge (c) and charge (d) processes.



**Figure S12.** Discharge/charge profiles of the cation-disordered ZnSiP<sub>2</sub> used for ex-situ characterizations.



**Figure S13.** Schematic illustration of the voids suitable for Li-ion accommodation within the crystal structure of the cation-disordered  $\text{Zn}_2\text{Si}_2\text{P}_4$  (one unit cell).



**Figure S14.** Ex-situ HRTEM and SAED patterns at the elected working potentials corresponding to Figure S9.



**Figure S15.** Schematic of the  $\text{Li}_2\text{ZnSi}$  crystal structure.



**Figure S16.** The ex-situ XRD (a) and HRTEM image (b) of the  $\text{ZnSiP}_2$  electrode after 30 cycles.



**Figure S17.** The ex-situ XPS of the  $\text{ZnSiP}_2$  electrode after 30 cycles: a) high-resolution survey of P 2p; b) high-resolution survey of Si 2p.



**Figure S18.** The ex-situ Raman of the  $\text{ZnSiP}_2$  electrode after 30 cycles.



**Figure S19.** XRD pattern of the cation-disordered  $\text{ZnSiP}_2/\text{C}$  composite.



**Figure S20.** FSEM images of the cation-disordered  $\text{ZnSiP}_2$  carbon composite: a) low-magnitude, b) high-magnitude.



Figure S21. N<sub>2</sub> adsorption-desorption isotherms of a) the cation-disordered ZnSiP<sub>2</sub>, and b) its carbon composite.



Figure S22. Cycle stability of the cation-disordered ZnSiP<sub>2</sub>/C anode at the current density of 2000 mA g<sup>-1</sup>.