Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Alkaline Polymer Electrolyte CO₂ Electrolyzer Operated with Pure Water

Zhenglei Yin^{1,†}, Hanqing Peng^{2,†}, Xing Wei², Huan Zhou², Jun Gong², Mingming Huai², Li Xiao^{2,*}, Gongwei Wang², Juntao Lu², and Lin Zhuang^{1,2,*}

¹ The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China ² College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China

[†] These authors contribute equally to this work.

* Corresponding authors. E-mails: chem.lily@whu.edu.cn, lzhuang@whu.edu.cn

QAPPT	
IEC (mmol/g)	2.65
Swelling degree (%) @ 60°C	9.0
Water uptake (%) @ 60°C	55
σ (mS/cm) @ 60°C	98

Table S1Properties of the APE applied in this work.

Fig. S1 Thermogravimetric analysis for as-synthesized Au/C catalyst under air atmosphere, with temperature ramping at 10°C/min.

Fig. S2 TEM image of the homemade Au/C catalyst. The inset shows a high-resolution view of a single Au nanoparticle.

Fig. S3 TEM histogram for the size distribution of Au NPs.

Fig. S4 Photo of the lab device for APE CO_2 electrolysis.

Fig. S5 Photo of the porous Ti sheet, used as the anode GDL in this work.

Fig. S6 Photo of the Au/C catalyst layer on QAPPT membrane.

Fig. S7 SEM image of the ionomer-impregnated IrO_2 catalyst layer on anode GDL.

Fig. S8 Regular CO₂RR tests in 0.1 M KHCO₃ solution with different catalyst loadings. (a) Partial current densities of H₂ and CO. (b) The changes in COFE. The geometric area was 0.8 cm² and CO₂ flow rate was set to 5 sccm.

Fig. S9 AC impedance spectra of the CO₂ electrolyzer at 60°C, indicating that the charge-transfer resistance (R_{CT}) reduces quickly upon increasing the cell voltage.

Fig. S10 Cyclic voltammogram of the CO_2 electrolyzer using Au/C. Au loading = 0.4 mg/cm², scan rate = 100 mV/s.

Fig. S11 ¹H NMR spectra of a standard solution of possible liquid products (blue line) and the water sampled from the anode water reservoir after longtime electrolysis (red line). DMSO was used as internal standard in both cases.