Supporting Information

High-throughput Computational Design of Organic-inorganic Hybrid Halide Semiconductors Beyond Perovskites for Optoelectronics

Yuheng Li¹ and Kesong Yang^{1,2,3}

¹Department of NanoEngineering, University of California San Diego, La Jolla, California 92093-0448, USA ²Program of Materials Science and Engineering, University of California San Diego, La Jolla, California 92093-0418, USA ³Center for Memory and Recording Research, University of California San Diego, La Jolla, California 92093-0401, USA

*Email: kesong@ucsd.edu. Tel: +1-858-534-2514

FIG. S1: Structures of the 24 perovskite-derived inorganic metal halide compounds ($Cs_xB_yX_z$) used as structural prototypes (HY.001-HY.024) to build the hybrid metal halide compound repository. The conventional-cell structures are shown in polyhedral style from the standard orientation of crystal shape using VESTA.¹ ICSD number and Pearson symbol of each inorganic compound are given. Note that CsCrI₃_ICSD_23383 and CsPbI₃_ICSD_161480 share the same Pearson symbol of oP20, and to distinguish them, we denote the former with oP20, and the later with oP20'.

TABLE S1: Calculated properties for the reference compound MASnBr₃ (cP5) using different functionals: lattice parameters (in Å), electron (hole) effective masses m_e^* (m_h^*) (in m_0) near the CBM (VBM), reduced effective mass (μ) (in m_0), and decomposition enthalpy (ΔH_d , in eV/f.u.). m_0 refers to the free electron rest mass. The experimentally measured lattice parameters are a = 5.837 Å and c = 5.853 Å.²

Functional	Lattice Parameters			m*	m*		ΔΗ.
	a	b	С	m _e	m _h	μ	$\Delta \Pi_d$
PBE	5.9538	5.9144	6.0039	0.31	0.18	0.11	0.26
vdW.D3	5.8446	5.8208	5.8533	0.32	0.12	0.09	0.22
optB86b	5.8289	5.8059	5.8473	0.32	0.14	0.10	0.21

Prototype	Brillouin		Γ-Ζ		Γ-Χ	
Structure	Zone	Candidates	m_e^*	m_h^*	m_e^*	m_h^*
		(MA) ₂ GeBr ₄	0.89	2.04	0.11	0.23
		$(MA)_2GeI_4$	0.80	38.73	0.10	0.23
	b ₃	$(MA)_2SnCl_4$	3.37	3.20	0.14	0.23
	UZT	$(MA)_2SnBr_4$	4.36	2.29	0.10	0.16
	Г Ү Ь	$(MA)_2SnI_4$	4.12	8.38	0.09	0.15
	b ₁ S	$(FA)_2SnBr_4$	2.41	1.76	0.12	0.18
00 8°0 8°0		(AD) ₂ GeI ₄	0.82	1.72	0.10	0.56
tI14		$(AD)_2 SnBr_4$	1.07	1.89	0.13	0.26
		$(AD)_2SnI_4$	1.17	1.19	0.10	0.22
Prototype	Brillouin	Candidates	Γ-Α		M - K	
Structure	Zone		m_e^*	m_h^*	m_e^*	m_h^*
		(MA) ₃ In ₂ I ₉	0.46	12.74	0.99	0.61
		(MA) ₃ Sb ₂ Br ₉	0.33	0.41	0.52	2.66
		$(MA)_3Sb_2I_9$	0.38	0.31	0.33	0.31
		(MA)3Bi2I9	0.41†	1.21†	0.63†	0.82†
	A	(FA) ₃ Ga ₂ I ₉	2.37	50.87	0.76	1.17
	Ч	(FA) ₃ In ₂ Br ₉	0.57	6.17	2.02	0.23
	bi M K	$(FA)_3In_2I_9$	0.52	9.03	1.68	0.57
		(FA)3Bi2I9	1.06†	10.46†	0.26†	0.75†
hP14		$(AD)_3Sb_2Br_9$	0.50	0.43	0.65	1.65
		$(AD)_3Sb_2I_9$	0.36	0.31	0.40	2.94
		$(AD)_3Bi_2I_9$	0.51	0.66	0.46	1.26
Prototype	Brillouin	Candidates	Г - А		M - K	
Structure	Zone		m_e^*	m_h^*	m_e^*	m_h^*
		(FA) ₃ Sb ₂ I ₉ (AD) ₃ In ₂ I ₉	2.00 0.92	6.96 1.63	0.39 1.27	1.90 1.40
hP28						
Prototype	Brillouin	Candidates	Γ-Ζ		Γ-Χ	
Structure	Zone		m_e^*	m_h^*	m_e^*	m_h^*
9						
	$\Sigma_1 Z Y_1$ b, Δ	$(MA)_2 ZrI_6$	0.80	1.59	8.46	0.98
To the second se	P	$(AD)_2HfI_6$	3.20†	0.80^{+}	2.54†	1.73†
		$(AD)_2 SnBr_6$	0.51	1.24	0.52	1.76
4118		(AD) ₂ TeBr ₆	1.69	2.17	2.15	1.03

TABLE S2: Calculated electron and hole effective masses along major directions for the anisotropic tI14, hP14, hP28, and tI18 candidates. † denotes effective masses calculated with spin-orbit coupling.

FIG. S2: Total energy during 5ps *ab-initio* molecular dynamics (AIMD) simulations at 300K for all the screened "tI14" compounds. In this and subsequent figures, the Pearson symbols of analogue inorganic compounds including tI14, hP14, tI18, cF36, and hP28 are used to distinguish the prototypes of the screened hybrid inorganic-organic materials.

FIG. S3: Total energy during 5ps ab-initio molecular dynamics (AIMD) simulations at 300K for all the screened "hP14" compounds.

FIG. S4: Total energy during 5ps ab-initio molecular dynamics (AIMD) simulations at 300K for all the screened "tI18" compounds.

FIG. S5: Total energy during 5ps ab-initio molecular dynamics (AIMD) simulations at 300K for all the screened "cF36" compounds.

FIG. S6: Total energy during 5ps ab-initio molecular dynamics (AIMD) simulations at 300K for all the screened "hP28" compounds.

- K. Momma and F. Izumi, VESTA3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, J. Appl. Crystallogr. 44, 1272–1276 (2011).
 F. Hao, C. C. Stoumpos, D. H. Cao, R. P. Chang, and M. G. Kanatzidis, Lead-Free Solid-State Organic–Inorganic Halide Perovskite Solar Cells, Nat. Photon. 8, 489 (2014).