## Supporting information

## Cd-free $Cu_2ZnSnS_4$ solar cell with an efficiency greater than 10 % enabled by $Al_2O_3$ passivation layers

Xin Cui<sup>+</sup><sup>a</sup>, Kaiwen Sun<sup>+</sup>\*<sup>a</sup>, Jialiang Huang<sup>+</sup><sup>a</sup>, Jae S. Yun<sup>a</sup>, Chang-Yeh Lee<sup>a</sup>, Chang Yan <sup>a</sup>, Heng Sun<sup>a</sup>, Yuanfang Zhang<sup>a</sup>, Chaowei Xue<sup>a</sup>, Katja Eder<sup>c</sup>, Limei Yang<sup>c</sup>, Julie M. Cairney<sup>c</sup>, Jan Seidel<sup>b</sup>, N. J. Ekins-Daukes<sup>a</sup>, Martin Green<sup>a</sup>, Bram Hoex<sup>\*</sup><sup>a</sup>, Xiaojing Hao<sup>\* a</sup>

+ These authors contributed equally to this work.

<sup>a</sup> School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia

<sup>b</sup> School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia

<sup>c</sup> Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, Australia.

E-mail: xj.hao@unsw.edu.au; b.hoex@unsw.edu.au; kaiwen.sun@unsw.edu.au



**Figure S1.** a-d) Box-plot diagram of the one-sun solar cell parameters of CZTS cells as a function of the number of ALD cycles used for the  $Al_2O_3$  passivation layer. 10 CZTS solar cells were fabricated per experimental condition. The box, horizontal bars, and point symbols indicate the 25/75 percentile, min/max and mean values, respectively.



**Figure S2.** Bandgap values extracted from the EQE measurements and PL peak position for devices with various ALD treatment. The inflection point of the EQE was used to determine the bandgap  $(E_g)$ , Dash lines are plotted for guiding purpose.



Figure S3. Defect density  $N_{DLCP}$  and  $N_{CV}$  at  $V_{dc} = 0$  derived from *C*-*V* and DLCP measurements of devices with different ALD treatment, respectively.



**Figure S4.** a-c) XPS peak of Zn 2p3, Sn 3d, S 2p, respectively, obtained from the surface of CZTS absorbers with no treatment (Ref), Al<sub>2</sub>O<sub>3</sub> treatment, TMA treatment, and H<sub>2</sub>O treatment.



**Figure S5.** a) KPFM set up under illumination. b) Root-mean-square (RMS) roughness ( $R_q$ ) distribution profile across the captured images in Figure 5a,e. c) Average CPD values difference between dark and light at an illumination intensities of 894 mW/cm<sup>2</sup> (400 nm) and 12000 mW/cm<sup>2</sup> (750 nm) for the reference and Al<sub>2</sub>O<sub>3</sub> treatment samples. Measurements were taken at a wavelength of 400 nm and 750 nm.



**Figure S6.** Raman spectra for bare CZTS absorbers and CZTS/ZnSnO after different ALD treatment. An excitation wavelength of 514 nm was used for the measurements.



**Figure S7.** a, b) UPS spectra of the CZTS absorbers with different ALD treatment. c) Energy band positions for CZTS absorbers of valance band maximum with respect to Fermi level energy,  $E_{F}$ .