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Normalized maximum power density

As the heat released by the human body is given at “free” cost and unlimited, 

the power output is more relevant than the conversion efficiency for a wearable 

device. When the resistance of external electrical load is equal to the internal 

resistance (Rin) of TE module (device), the power output reaches the maximum value 

(Pmax),1 

      , (S1)
𝑃𝑚𝑎𝑥 =

(𝛼𝑝 ‒ 𝛼𝑛)2Δ𝑇2

4𝑅𝑖𝑛

where ΔT is the temperature difference across the device, and αn and αp are the 

Seebeck coefficients of n-type and p-type legs, respectively. Eq. S1 can be rewritten 

as 

      , (S2)

𝑃𝑚𝑎𝑥 =
(𝛼𝑝 ‒ 𝛼𝑛)2Δ𝑇2

4(
𝐿

𝜎𝑛𝐴𝑛
+

𝐿
𝜎𝑝𝐴𝑝

)

where σn and σp are the electrical conductivities of n-type and p-type legs, 

respectively; L is the length and A is the cross-sectional area of the leg. Assuming A = 

An+Ap and An/Ap = ε, the normalized maximum power density ( ) is rewritten 𝑃𝑚𝑎𝑥𝐿/𝐴

as 

  . (S3)

𝑃𝑚𝑎𝑥𝐿/𝐴 =
(𝛼𝑝 ‒ 𝛼𝑛)2Δ𝑇2

4(1 + 𝜀)(
1

𝜎𝑛𝜀
+

1
𝜎𝑝

)

As shown, the normalized maximum power density is governed by the electrical 

properties of the material of which the leg is made, the parameter ε, and T. In our 
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six-couple in-plane Ag2S0.5Se0.5/Pt-Rh TE device, the contribution of Pt-Rh wire to (

) is negligible because of its large electrical conductivity and low Seebeck 𝑃𝑚𝑎𝑥𝐿/𝐴

coefficient. 

Phase analysis of Ag2S-based materials

The X-ray powder diffraction patterns of a series of Ag2(S,Se), Ag2S0.8Te0.2, and 

Ag2S0.5Se0.45Te0.05 samples are shown in Fig. S2a. A systematic peak shift to lower 

angles with increasing doping ratio was observed (cf. Fig. S2b). No discernible 

secondary phases were detected. The results of elemental mapping showed that Ag, 

S, and Se are homogeneous throughout the Ag2(S, Se) samples (cf. Figs. S2c). No 

elemental agglomerations or secondary phases were detected. Similar phenomena 

were observed for Ag2(S, Te) and Ag2(S, Se, Te). Apparently, all Se and Te atoms have 

entered into the lattice of Ag2S. 

Calculations of shear and bulk modulus

The room temperature shear modulus (GT) and bulk modulus (BT) for Ag2(S, Se) 

and Ag2(S, Te) were derived from the measured transverse (νt) and longitudinal (νl) 

sound speed using the following formulas:

      (S4)
𝑣𝑡 =

𝐺𝑇

𝑑

and

   , (S5) 

𝑣𝑙 =
𝐵𝑇 +

4
3

𝐺𝑇

𝑑



4

where d is the mass density.

The Poisson ratio is given by 

   , (S6) 
𝜈 =

2𝑣2
𝑡 ‒ 𝑣2

𝑙

2(𝑣2
𝑡 ‒ 𝑣2

𝑙)

Calculations of lattice thermal conductivity

The total thermal conductivity (κ) of a solid is composed of the carrier thermal 

conductivity (κc) and the lattice thermal conductivity (κL). The κc is estimated using 

the Wiedeman-Franz law (κc = LTσ, where L is the Lorenz number). According to the 

empirical equation proposed by Kim et al.2, the L values for  𝐿 = [1.5 + 𝑒
‒ |𝛼|
116 ] × 108 

Ag2S1-xSex (x = 0, 0.03, 0.1, 0.3, and 0.5) and Ag2S0.8Te0.2 were calculated with the 

data shown in Fig. S3b. Based on the L values and measured σ values, the κL values 

for these materials were calculated by subtracting κc from the total κ. The 

temperature dependence of κL for all samples are shown in Fig. S3. 

The Callaway model

In the Callaway model, the lattice thermal conductivity of a solid solution is given by3

, (S7) 
𝐿 = 𝑘𝐵 [4𝜋𝑣𝑠(𝐴𝐶𝑇)1 2]tan ‒ 1 [

𝐾𝜃
ℏ

·(
𝐴

𝐶𝑇
)

1
2]                                               

where CT is the relaxation time for phonon-phonon scattering (C is a constant and T 

is the temperature), vs is the mean sound speed, kB is the Boltzman constant and A is 

the coefficient for the Rayleigh-type point defect scattering rate. In the phase pure 

Ag2S,
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, (S8) 𝑝𝑢𝑟𝑒 = 𝑘2
𝐵Θ𝐷 [2𝜋2𝑣𝑠ℏ𝐶𝑇]                                         

where ΘD is the Debye temperature with a value of 108 K as calculated from the 

measured sound speed. The , where Ω0 is the unit cell volume and Γ 𝐴 = Ω0Γ (4𝜋𝑣3
𝑠)

is the scattering parameter. The scattering parameters Γ has two contributions, ΓM 

and ΓS, where ΓM and ΓS are scattering parameters related to mass fluctuation and 

strain field fluctuation, respectively. They can be further expressed as

Γ = Γ𝑀 + Γ𝑆 = 𝑥(1 ‒ 𝑥)[(∆𝑀
𝑀 )2 + 𝜀(∆𝑎

𝑎 )2]            ,(𝑆9)

where ΔM and Δa are the difference in mass and lattice constants between S and Se 

atoms, and M and a are the molar mass and lattice constant of Ag2(S, Se), 

respectively. The parameter ε is obtained by fitting experimental data.

Formation energy of defects 

The first-principle calculations were performed based on the density functional 

theory (DFT) as implemented in VASP program4. The PBEsol functional5 was used to 

optimize the atomic structures and calculate the defect formation energy. Projector 

augmented wave (PAW)6 potentials were used to describe the core–valence 

interaction and plane-waves up to the kinetic energy of 272 eV were used as the 

basis set. A (3×2×2) 144-atom supercell was used to model the defects. A 2×2×2 k-

point mesh was used to sample the Brillouin zone of the supercell. The atomic 

structures were relaxed until the residual forces on all atoms were smaller than 0.01 

eV. 

The formation energy of a lattice defect (D) in a charge state q was calculated 
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according to 

 , (S9)
𝐸𝑓𝑜𝑟𝑚(𝐷𝑞) = 𝐸(𝐷𝑞) ‒ 𝐸𝑏𝑢𝑙𝑘 + ∑

𝑖

∆𝑛𝑖𝜇𝑖 + 𝑞(𝐸𝐹 + 𝐸𝑉𝐵𝑀)

Where E(Dq) and Ebulk are the total energies of defect-containing and defect-free 

supercells, respectively, Δni is the quantity of the i-th species exchanged in forming 

the defect and μi is the chemical potential of the i-th species. The Fermi level (EF) is 

referenced to the valence band maximum (VBM) energy (EVBM) of the defect-free 

supercell. μs and μAg were referenced to the bulk sulfur in the orthorhombic α-phase 

with a space group Cmcm and bulk silver in its fcc structure, respectively. The 

transition level of a defect from a charge neutral state to q charge state, , was 𝜀(0/𝑞)

calculated as

   , (S10)
𝜀(0/𝑞) =

1
𝑞(𝐸(𝐷0) ‒ 𝐸(𝐷𝑞)) ‒ 𝐸𝑉𝐵𝑀) 

We considered two most probable native donor defects, i.e., sulfur vacancy (VS) 

and silver interstitial (Agi). The calculated Eform of VS and Agi in neutral charge state 

are 0.56 and 0.91 eV, respectively. We found that VS is neither a donor nor an 

acceptor because its donor levels are so deep that they appear below the VBM, and 

similarly its acceptor levels are above the conduction band minimum (CBM). In 

contrast, Agi was found to be a shallow donor with a  transition level 0.15 eV (0 / ) 

above the CBM. It is expected that increasing the supercell size will reduce the 

image-charge interactions in the calculations of the charged states, thereby making 

the transition level closer to the CBM7. It is plausible to argue that the Agi lattice 
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defects account for the native charge carriers observed in experiments. The 

optimized atomic structure including Agi is shown in Figs. S8a and S8b, where the Agi 

atom lies at the center of an S-Ag eight-member ring, and one Ag atom is pushed out 

of the ring with respect to its original position. 

To examine the effect of Se doping on the formation energy of Agi, we replaced 

the neighboring S atoms around the Agi atom by Se atoms gradually. The formation 

energy was calculated by taking the energy difference between the results with and 

without the Agi atom, where both structures were re-optimized. As shown in Fig. S8c, 

the Eform of Agi in monoclinic Ag2S is 0.91 eV. With increasing Se content, Eform 

gradually decreases. When six neighboring S atoms are replaced by Se atoms, the 

Eform of Agi decreases to 0.72 eV. This result indicates that increasing Se 

concentration in Ag2S1Se1-x tends to facilitate more Agi defects and thus higher 

electron concentration, which agrees with the experimental observations.

Electron band structure calculations 

The band structure calculation was performed using the same method as that in 

the formation energy calculations above. For Ag2S0.5Se0.5 solid solution, we 

considered an ordered structure by replacing two of the four S atoms with Se atoms 

in the optimized unit cell of Ag2S which consists of 16 atoms. Then the volume of the 

ordered structure was relaxed by keeping the ions and the shape of the cell fixed. A 

16×8×8 k-point mesh was used to calculate the charge density. The effective masses 

were calculated by fitting the electronic band structure to quadratic functions near 

the VBM and CBM (both are at Γ point) along the three principal axes, and the results 
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are listed in Table SII. 
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Supplementary Figure 1| An Ag2(S, Se)-based wearable device used for harvesting 
body heat. a) Optical image of the Ag2S0.5Se0.5/Pt-Rh wearable device with a tilted 
architecture, b) Open circuit voltage V and power output Pout as a function of current 
I for the Ag2S0.5Se0.5/Pt-Rh wearable device under an ambient temperature about 
290K.
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Supplementary Figure 2| Phase compositions of Ag2S-based materials. a) Powder 
X-ray diffraction patterns for Ag2(S, Se), Ag2(S, Te), and Ag2(S, Se, Te) at room 
temperature. b) Magnification of the X-ray diffraction patterns at 2θ of 30-34°for 
Ag2S1-xSex (x = 0, 0.1, 0.3, and 0.5). c) Backscatter electron (AsB) image and elemental 
energy dispersive spectroscopy (EDS) mappings of Ag2S0.5Se0.5 at 2000× 
magnification.
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Supplementary Figure 3| Thermal transport properties of Ag2S-based materials. 
Temperature dependences of a) total thermal conductivity κ, b) Lorenz number L, 
and c) lattice thermal conductivity κL for Ag2S1-xSex (x = 0, 0.1, 0.3, and 0.5), 
Ag2S0.8Te0.2, and Ag2S0.5Se0.45Te0.05. d) Lattice thermal conductivity κL as a function of 
Se content at 300 K. The filled circles are experimental data. The data of Ag2Se are 
taken from Ref.8. The dash dot line is the results calculated by the Callaway model.
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Supplementary Figure 4| Robustness of Ag2S-based materials. a) Optical images of 
the Ag2S0.5Se0.5 foil used for bending test. The bending angle is around 120 degree. 
The foil is firstly bent in one direction and then restored to its initial shape, followed 
by bending in the opposite direction. b) Relative electrical conductivity variation σ/σ0 
and c) relative Seebeck coefficient variation α/α0 of the Ag2S0.5Se0.5 foil after various 
number of times of bending cycles. 
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Supplementary Figure 5| stability of Ag2S0.5Se0.5 stripe under strain. Relative 
variation of resistance of a Ag2S0.5Se0.5 slice under different bending radii r. 
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Supplementary Figure 6| Carrier concentrations of Ag2S-based materials. 
Temperature dependence of carrier concentration nH for Ag2S1-xSex (x = 0, 0.1, 0.3, 
and 0.5), Ag2S0.8Te0.2, and Ag2S0.5Se0.45Te0.05.
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Supplementary Figure 7| Calculated defect activation energy (Ea) values for pure 
Ag2S and Ag2(S,Se). 
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Supplementary Figure 8| Formation energy of the interstitial silver defect and 
band structure of Ag2S-based compounds. a) Top view and b) side view of the 
atomic structure of interstitial silver defect in monoclinic Ag2S phase. The yellow, 
grey, and blue balls represent sulfur, silver, and silver interstitial atoms, respectively. 
c) Formation energy Eform of the interstitial silver defect calculated for a supercell of 
Ag96S48-xSex with varying Se concentration. The dashed line is guided to the eyes. d) 
Calculated band structures for Ag2S and Ag2S0.5Se0.5.
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Supplementary Figure 9| Comparison of room temperature lattice thermal 
conductivity κL between Ag2S-based inorganic materials and some representative 
organic TE materials. The room temperature κL data9-16 are obtained by substracting 
the carrier thermal conductivity κc from the measured total thermal conductivity κ. 
The κc is estimated according to the Wiedemann-Franz relation with a Lorenz 
number L = 2.0×10-8·W·Ω·K-2.
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Supplementary Figure 10| Performance and stability of Ag2S0.5Se0.5/Pt-Rh TE device. 
Short circuit Isc and open circuit voltage Voc for the Ag2S0.5Se0.5/Pt-Rh TE device at 
different temperature difference ΔT. b) Relative electrical resistance variation R/R0 
of the Ag2S0.5Se0.5/Pt-Rh TE device after bending various number of times. The inset 
shows the optical image for the bended device. The bending radius is 10 mm. After 
each bending, the device is restored to its initial shape for the follow-up resistance 
measurement and the next bending-measurement cycle.
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Supplementary Figure 11| Device characterization details. Schematic of the self-
setup power density measurement system.
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Supplementary Table I. Phase-transition temperature(Tc), Hall carrier 
concentration (nH), carrier mobility (μH), electrical conductivity (σ), Seebeck 
coefficient (S), power factor (PF), TE figure of merit(zT), thermal conductivity (κ); 
transverse (νt), longitudinal (νl), and averaged (νavg) sound speed; shear modulus 
(GT), bulk modulus (BT), the (BT/GT) ratio, Poisson’s radio (v), and lattice thermal 
conductivity (κL) of Ag2(S, Se), Ag2(S, Te), and Ag2(S, Se, Te). These are all room 
temperature values unless otherwise noted.

Compositions Ag2S Ag2S0.9Se0.1 Ag2S0.7Se0.3 Ag2S0.5Se0.5 Ag2S0.8Te0.2 Ag2S0.5Se0.45Te0.05

Tc (K) 449 420 382 355 \ 330

nH (cm-3) 1.6×1014 8.5×1015 3.6×1017 3.6×1018 1.9×1019 6.2×1018

μH 
(cm2·V-1·s-1)

39.8 19.6 182 520 135 272

σ (S·m-1) 0.102 2.67 1047 3.0×104 3.9×104 2.7×104

S (μV·K-1) -1051 -714 -321 -123 -101 -136

PF 
(μW·cm-1·K-2)

0.0011 0.013 1.08 4.84 3.88 4.96

zT 6.3×10-5 7.6×10-4 0.075 0.26 0.25 0.44

κ 
(W·m-1·K-1)

0.54 0.52 0.43 0.57 0.46 0.33

κL 
(W·m-1·K-1)

0.54 0.52 0.42 0.39 0.29 0.19

νt (m·s-1) 1128 1090 1047 1084 1041 1099

νl (m·s-1) 2596 2510 2645 2886 2406 2807

νavg (m·s-1) 1617 1563 1579 1685 1496 1688

GT (GPa) 9.2 8.8 8.2 9.1 8.0 9.4

BT (GPa) 36.5 34.8 41.7 52.1 32.1 48.9

BT / GT 3.97 3.95 5.09 5.73 4.01 5.20

v 0.38 0.38 0.41 0.42 0.38 0.41
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Supplementary Table II. Calculated electron effective masses of monoclinic Ag2S 
and Ag2S0.5Se0.5 based on the calculated band structure shown in Fig. S6d. 

　 Valence band (m0) Conduction band (m0)
Ag2S Γ→Y Γ→E Γ→X Γ→Y Γ→E Γ→X

1.95 2.54 0.90 0.46 0.47 0.27
　 Valence band (m0) Conduction band (m0)

Ag2S0.5Se0.5 Γ→Y Γ→E Γ→X Γ→Y Γ→E Γ→X
1.05 2.01 0.53 0.37 0.43 0.21
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