Supplemental Information

High-throughput computational screening for solid-state Li-ion conductors

Leonid Kahle,*Aris Marcolongo,‡ and Nicola Marzari

1 Bandgaps

In our screening funnel, we calculate the band gap at the experimental volume. Here, using data for 717 Li-containing structures, we estimate how the bandgap at the relaxed volume V_{rel} correlates with the band gap at the experimental volume V_{exp} . We note that these structures are not necessarily the same as in the manuscript: since we did not relax metallic structures in the screening study, we would not be able to compare the bandgaps of metallic or small-bandgap compounds. Therefore, we took the data from another screening study that uses the same protocols as our work, including ICSD and COD entries. On the right (Fig. S1) we plot the PBE bandgap in the experimental configuration (before the variable-cell relaxation) against the PBE bandgap in the variable-cell relaxed configuration. In the same plot, the color encodes the relative change of volume during relaxation given by $\frac{V_{rel}}{V_{exp}}$. We observe very good correlation in those two values, indicating that we can take the bandgap in the experimental configuration as an estimate for the bandgap at the variable-cell relaxed configuration. There is no evidence that the relative volume

Fig. S1 We plot the bandgap at V_{exp} on the *x*-axis against the bandgap at V_{rel} on the *y*-axis, with color encoding the relative volume change.

change, indicated by the color, affects the quality of the estimate in any significant way. We also observe that a few structures with no bandgap at the experimental configuration display a bandgap at the variable-cell relaxed configuration, while the reverse does not happen. Therefore, we are confident that no structure that was estimated as an insulator turned metallic during the relaxation.

2 Estimate of the diffusion coefficient

In the following, we explain our method to extract diffusion coefficients from molecular dynamics simulations. In the literature, the following expression is most often employed (c.f. Eq (2) in the main manuscript):

$$D_{tr}^{\text{Li}} = \lim_{t \to \infty} \frac{1}{6t} \left\langle \text{MSD}(t) \right\rangle_{NVT} = \lim_{t \to \infty} \frac{1}{6t} \frac{1}{N_{\text{Li}}} \sum_{I} \left\langle |\boldsymbol{R}_{I}(t+\tau) - \boldsymbol{R}_{I}(\tau)|^{2} \right\rangle_{\tau}, \quad (1)$$

where \mathbf{R}_{l} are the atomic positions and $\langle \cdots \rangle_{NVT}$ indicates the average over the canonical ensemble sampled ergodically by the molecular dynamics simulation, replacing thus the ensemble average with a time average $\langle \cdots \rangle_{\tau}$. According to Eq. (1), one should calculate the MSD of the configuration at time $t + \tau$ from a reference configuration at time τ and divide by the time t that passed. However, this has the disadvantage that periodic atomic vibrations due to thermal motion are also contributing. By taking $t \to \infty$, it can be ensured that the effect of atomic vibrations becomes negligible. However, another approach is to estimate the derivative of MSD(t) with respect to t:

$$D_{tr}^{\text{Li}} = \lim_{t' \to \infty} \frac{1}{6} \frac{d}{dt} \left\langle \text{MSD}(t) \right\rangle_{NVT} \Big|_{t=t'}, \tag{2}$$

Fig. S2 We plot the diffusion coefficient estimated from the total MSD at 50 ps on the *y*-axis against the diffusion coefficients estimate from the slope of the MSD between 8 ps and 10 ps.

Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. E-mail: leonid.kahle@epfl.ch

[‡] Present address: IBM Research GmbH, Zürich Research Laboratory, CH-8803 Rüschlikon, Switzerland

which can be evaluated numerically by fitting a line to a segment around t'. Eq. (2) has the advantage, compared to Eq. (1), that the effect of periodic atomic motion at $t \rightarrow 0$ can be dismissed as long as t' is in the diffusive regime. For fast diffusion and, equivalently, large times t where the MSD is taken or its slope fitted, the results should be equivalent. This is shown in Fig. S2, where we calculate the diffusion coefficients of Li in all pinball simulations presented in the main manuscript using Eqs. (1) and (2). For very diffusive systems, the two methods are equivalent, while for non-diffusive systems, the periodic contribution leads to an overestimate of the diffusion when using Eq. (1).

A further question is how small *t* can become in order to be in the diffusive regime for the systems of interest. As fitting at small times *t* is advantageous to increase the sampling of the MSD, *t* should ideally be as small as possible while giving the same results as larger times *t*. We take all simulations using the pinball model that showed a Li-ion diffusion above $D_{Li} = 10^{-8}$ cm^s s⁻¹, estimated as presented in the manuscript. Since we are not interested in structures with lower diffusion coefficients and therefore we do not need to consider the accuracy for those. To test how the slope of the MSD converges, we extract the slope at different times and compare these to the slope at 40 ps (see Fig. S3). If the slope is not in the diffusive regime and still capturing ballistic or cage motion, the diffusion coefficient should be overpredicted, as it happens if we fit the MSD at 5 ps (top left corner). However, the number of such false positives for diffusivity drops significantly when fitting at 10 ps (top right), which therefore is judged as an optimal choice, offering high statistical accuracy while lying in the diffusive regime for fast ionic conductors.

Fig. S3 We plot the estimate from the slope of the MSD at t' = 40 ps against the estimates at 5 ps, 10 ps, 20 ps, and 30 ps in the top left, top right, bottom left, and bottom right corner, respectively.

3 Fast-ion conductors (group A)

In the following, we plot the MSD for every species for the materials studied with FPMD (groups A, B, and C). The MSD is calculated as described in Secs. 2.5 and 2.6 of the manuscript. We split the trajectory into independent blocks and calculate for each the MSD (thin solid lines in subsequent blocks). The diffusion coefficient is extracted using Eq. (2), but with longer times than for the pinball simulations (at least 20 ps). A line is fitted to that regime using linear regression for every block; these are shown as thin dashed lines in the subsequent figures. The resulting diffusion coefficient is given in the legend, with the mean and standard error obtained from the independent estimates of the diffusion in every block.

Fig. S4 MSD(t) for Li₂₀Ge₂P₄S₂₄ from FPMD for all temperatures studied.

Fig. S5 MSD(t) for Li₈Ga₈Br₂₄ from FPMD for all temperatures studied.

Fig. S6 MSD(t) for $Li_4Ga_4I_{16}$ from FPMD for all temperatures studied.

Fig. S7 MSD(t) for Li₄₀Cl₂₄O₈ from FPMD for all temperatures studied.

Fig. S8 MSD(t) for Li₂₀Cl₁₂O₄ from FPMD for all temperatures studied.

Fig. S9 MSD(t) for $Li_8Cs_4I_{12}$ from FPMD for all temperatures studied.

Fig. S10 MSD(t) for $Li_{56}Ta_8O_{48}$ from FPMD for all temperatures studied.

4 Potential fast-ionic conductors (group B)

Table S1 The structures that are found as potential ionic conductors and studied at different temperatures (500 K - 1000 K). We give the stoichiometric formula, the database and identifier of the repository this structure originates from, the formula of the supercell used, the figure where the mean-square displacement is shown in this supplemental information, and the simulation times at 500 K, 600 K, 750 K, and 1000 K (in ps)

Structure	DB	DB-id	Supercell	Figure	Volume change	T ^{sim} 500	T ^{sim} ₆₀₀	T ^{sim} ₇₅₀	T ^{sim}
Li ₄ Re ₆ S ₁₁	COD	1008693	Li ₁₆ Re ₂₄ S ₄₄	S11	2.6%	87.1	174.3	87.2	290.8
$Li_6P_1S_5I_1$	ICSD	421083	Li ₄₈ P ₈ S ₄₀ I ₈	S14	2.9%	87.2	87.2	87.2	72.7
$Li_2B_2S_5$	COD	1510745	$Li_8B_8S_{20}$	S20	5.4%	203.4	203.4	348.7	145.4
$Li_1Ta_1Ge_1O_5$	ICSD	280992	Li ₄ Ta ₄ Ge ₄ O ₂₀	S16	3.5%	145.3	523.0	319.6	218.1
$Li_2S_2O_7$	ICSD	188009	Li ₁₆ S ₁₆ O ₅₆	S25	5.4%	232.4	145.3	174.3	203.6
Li ₁ I ₁ O ₃	ICSD	20032	Li ₁₆ I ₁₆ O ₄₈	S19	15.3%	145.3	726.4	523.0	72.7
Li ₁ Al ₁ Ši ₁ O ₄	COD	9000368	Li ₁₂ Al ₁₂ Si ₁₂ O ₄₈	S17	3.6%	145.3	697.3	290.6	218.1
$Li_{5}B_{1}S_{4}O_{16}$	ICSD	428002	$Li_{20}B_4S_{16}O_{64}$	S15	6.3%	610.2	610.2	610.2	218.1
$Li_2Mg_2S_3O_{12}$	COD	2020217	$Li_8Mg_8S_{12}O_{48}$	S18	4.1%	145.3	726.4	406.8	218.1
$Li_1Ti_1P_1O_5$	ICSD	39761	Li ₁₆ Ti ₁₆ P ₁₆ O ₈₀	S13	5.8%	232.4	232.4	261.5	218.1
$Li_3Cs_1Cl_4$	ICSD	245975	Li ₂₄ Cs ₈ Cl ₃₂	S22	1.6%	726.4	726.4	726.4	218.1
$Li_{6}Y(BO_{3})_{3}$	COD	1510933	$Li_{24}Y_4B_{12}O_{36}$	S21	2.8%	145.3	145.3	726.4	218.1
$Li_2Zn_1Sn_1Se_4$	COD	7035178	Li ₁₆ Zn ₈ Sn ₈ Se ₃₂	S26	4.2%	145.3	145.3	145.3	218.1
Li ₂ Ti ₃ O ₇	ICSD	193803	Li ₈ Ti ₁₂ O ₂₈	S29	2.6%	145.3	145.3	145.3	218.1
Rb ₁ Li ₇ Si ₂ O ₈	ICSD	33864	Rb ₄ Li ₂₈ Si ₈ O ₃₂	S24	2.8%	145.3	145.3	726.4	218.1
$Li_3Ga_1F_6$	COD	8101456	Li ₁₈ Ga ₆ F ₃₆	S27	4.8%	145.3	145.3	145.3	218.1
Li ₂ In ₂ Ge ₁ S ₆	COD	4329224	$Li_{16}In_{16}Ge_8S_{48}$	S28	5.6%	145.3	261.5	145.3	218.1
Li ₁ Mo ₁ As ₁ O ₆	COD	2014117	Li ₈ Mo ₈ As ₈ O ₄₈	S30	8.2%	610.2	145.3	174.3	218.1
Li ₉ Ga ₃ P ₈ O ₂₉	COD	2208797	Li ₁₈ Ga ₆ P ₁₆ O ₅₈	S23	2.1%	145.3	145.3	261.5	218.1

Fig. S11 MSD(t) for $\text{Li}_{16}\text{Re}_{24}\text{S}_{44}$ from FPMD for all temperatures studied.

Fig. S12 MSD(t) for ${\rm Li}_{16}{\rm Ti}_{16}{\rm P}_{16}{\rm O}_{80}$ from FPMD for all temperatures studied.

Fig. S13 MSD(t) for ${\rm Li}_{16}{\rm Ti}_{16}{\rm P}_{16}{\rm O}_{80}$ from FPMD for all temperatures studied.

Fig. S14 MSD(t) for $Li_{48}P_8S_{40}I_8$ from FPMD for all temperatures studied.

Fig. S15 $\mbox{MSD}(t)$ for $\mbox{Li}_{20}\mbox{B}_4\mbox{S}_{16}\mbox{O}_{64}$ from FPMD for all temperatures studied.

Fig. S16 MSD(t) for $\text{Li}_4\text{Ta}_4\text{Ge}_4\text{O}_{20}$ from FPMD for all temperatures studied.

Fig. S17 MSD(t) for $Li_{12}Al_{12}Si_{12}O_{48}$ from FPMD for all temperatures studied.

Fig. S18 MSD(t) for $\text{Li}_8\text{Mg}_8\text{S}_{12}\text{O}_{48}$ from FPMD for all temperatures studied.

Fig. S19 MSD(t) for $Li_{16}I_{16}O_{48}$ from FPMD for all temperatures studied.

Fig. S20 MSD(t) for Li₈B₈S₂₀ from FPMD for all temperatures studied.

100

100

Fig. S21 MSD(t) for $\text{Li}_{24}\text{Y}_4\text{B}_{12}\text{O}_{36}$ from FPMD for all temperatures studied.

Fig. S22 MSD(t) for $Li_{24}Cs_8Cl_{32}$ from FPMD for all temperatures studied.

Fig. S23 MSD(t) for ${\rm Li}_{18}{\rm Ga}_6{\rm P}_{16}{\rm O}_{58}$ from FPMD for all temperatures studied.

Fig. S24 MSD(t) for $\text{Rb}_4\text{Li}_{28}\text{Si}_8\text{O}_{32}$ from FPMD for all temperatures studied.

Fig. S25 MSD(t) for $Li_{16}S_{16}O_{56}$ from FPMD for all temperatures studied.

Fig. S26 MSD(t) for $\rm Li_{16}Zn_8Sn_8Se_{32}$ from FPMD for all temperatures studied.

Fig. S27 MSD(t) for $Li_{18}Ga_6F_{36}$ from FPMD for all temperatures studied.

Fig. S28 MSD(t) for $\rm Li_{16}ln_{16}Ge_8S_{48}$ from FPMD for all temperatures studied.

Fig. S29 MSD(t) for Li₈Ti₁₂O₂₈ from FPMD for all temperatures studied.

Fig. S30 MSD(t) for $\text{Li}_8\text{Mo}_8\text{As}_8\text{O}_{48}$ from FPMD for all temperatures studied.

Table S2 We list all the structures that have been calculated only at 1000 K, and where we find diffusion of Li ions, although not high enough to warrant a calculation also at lower temperatures

Structure	DB	DB-id	Supercell	Fig.	Vol. Δ	T ^{sim} ₁₀₀₀
Li ₁ Ga ₁ Cl ₃	COD	1530096	Li ₁₆ Ga ₁₆ Cl ₄₈	S31	17.0%	58.2
$Li_1Ga_1Br_4$	ICSD	61337	$Li_{16}Ga_{16}Br_{64}$	S32	30.8%	72.7
Li ₆ Mg ₁ Br ₈	ICSD	73275	$Li_{12}Mg_2Br_{16}$	S33	2.0%	72.7
Li ₃ P ₇	ICSD	60774	Li ₁₂ P ₂₈	S34	2.1%	174.5
$Li_3As_1S_3$	COD	2007413	$Li_{12}As_4S_{12}$	S35	2.9%	189.1
$Li_1B_1S_4Cl_4O_{12}$	COD	1004054	$Li_4B_4S_{16}Cl_{16}O_{48}$	S36	11.7%	218.1
$Li_1Sn_2P_3O_{12}$	ICSD	83831	Li ₂ Sn ₄ P ₆ O ₂₄	S37	4.1%	87.3
$Li_4Ge_9O_{20}$	ICSD	34361	$Li_4Ge_9O_{20}$	S38	5.4%	58.2
Li ₁ I ₁ O ₄	COD	1536985	Li ₈ I ₈ O ₃₂	S39	10.4%	58.1
$Rb_2Li_1Ta_1S_4$	COD	1535645	Rb ₈ Li ₄ Ta ₄ S ₁₆	S40	6.4%	436.3
Li ₁ P ₇	ICSD	23621	Li ₈ P ₅₆	S41	5.2%	436.3
$Li_4P_2O_7$	COD	2005920	Li ₁₆ P ₈ O ₂₈	S42	4.0%	43.6
Li ₂ Ge ₄ O ₉	COD	2019177	Li ₁₆ Ge ₃₂ O ₇₂	S43	4.7%	189.1
$Li_1Au_1F_4$	ICSD	33953	Li ₈ Au ₈ F ₃₂	S44	11.9%	58.2
$Li_2Se_1O_4$	ICSD	67234	Li ₁₂ Se ₆ O ₂₄	S45	5.3%	116.3
$Li_1Al_1Se_2$	COD	4321118	Li ₁₆ Al ₁₆ Se ₃₂	S46	3.1%	218.1
$Li_1In_1P_2O_7$	ICSD	60935	Li ₄ In ₄ P ₈ O ₂₈	S47	6.3%	436.3
Li ₄ Ti ₁ O ₄	ICSD	75164	Li ₂₄ Ti ₆ O ₂₄	S48	1.4%	436.3
$Li_6Si_2O_7$	COD	1539516	Li ₂₄ Si ₈ O ₂₈	S49	1.9%	445.2
Li ₂ In ₂ Si ₁ Se ₆	COD	4329225	$\text{Li}_{16}\text{In}_{16}\text{Si}_8\text{Se}_{48}$	S50	5.5%	218.1
$Li_1B_1S_2O_8$	ICSD	425174	Li ₈ B ₈ S ₁₆ O ₆₄	S51	6.9%	218.1

Fig. S31 MSD(t) for $Li_{16}Ga_{16}Cl_{48}$ from FPMD at 1000 K.

Fig. S33 MSD(t) for $Li_{12}Mg_2Br_{16}$ from FPMD at 1000 K.

Fig. S32 MSD(t) for $Li_{16}Ga_{16}Br_{64}$ from FPMD at 1000 K.

Fig. S34 MSD(t) for $Li_{12}P_{28}$ from FPMD at 1000 K.

Fig. S35 MSD(t) for $Li_{12}As_4S_{12}$ from FPMD at 1000 K.

Fig. S38 MSD(t) for $Li_4Ge_9O_{20}$ from FPMD at 1000 K.

Fig. S36 MSD(t) for $Li_4B_4S_{16}CI_{16}O_{48}$ from FPMD at 1000 K.

Fig. S37 MSD(t) for $Li_2Sn_4P_6O_{24}$ from FPMD at 1000 K.

Fig. S40 MSD(t) for $Rb_8Li_4Ta_4S_{16}$ from FPMD at 1000 K.

Fig. S41 MSD(t) for Li₈P₅₆ from FPMD at 1000 K.

Fig. S44 MSD(t) for $Li_8Au_8F_{32}$ from FPMD at 1000 K.

Fig. S42 MSD(t) for $Li_{16}P_8O_{28}$ from FPMD at 1000 K.

Fig. S43 MSD(t) for $Li_{16}Ge_{32}O_{72}$ from FPMD at 1000 K.

Fig. S46 MSD(t) for $Li_{16}AI_{16}Se_{32}$ from FPMD at 1000 K.

Fig. S47 MSD(t) for $Li_4In_4P_8O_{28}$ from FPMD at 1000 K.

Fig. S48 MSD(t) for $Li_{24}Ti_6O_{24}$ from FPMD at 1000 K.

Fig. S50 MSD(t) for $Li_{16}In_{16}Si_8Se_{48}$ from FPMD at 1000 K.

Fig. S51 MSD(t) for $Li_8B_8S_{16}O_{64}$ from FPMD at 1000 K.

Fig. S49 MSD(t) for $Li_{24}Si_8O_{28}$ from FPMD at 1000 K.

5 Non-diffusive structures (group C)

Structure	DB	DB-id	Supercell	Figure	Volume change	T ^{sim} ₁₀₀₀
Li ₂ Ce ₁ N ₂	ICSD	34003	Li ₁₆ Ce ₈ N ₁₆	S52	1.1%	334.5
$Li_6Sr_3Ta_2O_{11}$	COD	4306193	Li ₂₄ Sr ₁₂ Ta ₈ O ₄₄	S53	2.0%	218.1
Li ₅ Re ₁ N ₄	ICSD	92468	$Li_{20}Re_4N_{16}$	S54	0.2%	160.0
$Li_6Zn_1O_4$	ICSD	62137	$Li_{24}Zn_4O_{16}$	S55	1.6%	407.2
$Li_{4}K_{1}Al_{1}O_{4}$	ICSD	65260	$Li_{64}K_{16}AI_{16}O_{64}$	S56	1.9%	87.3
$Li_2Al_1B_5O_{10}$	COD	2012178	$Li_8Al_4B_{20}O_{40}$	S57	4.9%	72.7
Li ₂ Cs ₃ Br ₅	ICSD	245978	$Li_8Cs_{12}Br_{20}$	S58	-12.5%	72.7
$Na_1Li_2B_1P_2O_8$	ICSD	291512	$Na_4Li_8B_4P_8O_{32}$	S59	4.7%	101.8
$Li_1La_1C_2O_6$	ICSD	174533	$Li_4La_4C_8O_{24}$	S60	3.2%	72.7
$Li_1Au_1F_4$	COD	1510140	$Li_{16}Au_{16}F_{64}$	S61	14.8%	43.6
$Li_1Si_2B_1O_6$	COD	1511474	$Li_{16}Si_{32}B_{16}O_{96}$	S62	2.7%	101.8
$Li_2Cd_1P_4O_{12}$	COD	1008009	$Li_8Cd_4P_{16}O_{48}$	S63	5.3%	116.3
$Li_2Si_2O_7$	COD	1501470	$Li_{16}Si_{24}O_{56}$	S64	3.5%	72.7
Li ₂ Te ₁ O ₂	ICSD	4317	$Li_{22}Te_{16}O_{48}$	S65	10.3%	72.7
Li ₂ Au ₁ O ₂	COD	1510224	$Li_{24}Au_{12}O_{24}$	S66	2.9%	58.2
Sr ₁ Li ₂ Si ₂ N ₄	COD	4002768	$Sr_{12}Li_{24}Si_{24}N_{48}$	S67	-0.4%	72.7
$Li_1Y_1Mo_2O_0$	ICSD	28526	$Li_{2}Y_{2}Mo_{0}O_{24}$	S68	2.5%	72.7
$Li_2Mo_1O_4$	COD	7024042	$Li_{12}Mo_{4}O_{24}$	S69	3.8%	48.5
$Li_2Pd_1O_2$	ICSD	61199	$Li_{24}Pd_{12}O_{24}$	S70	2.0%	72.7
$Li_2Sc_1B_2O_2$	COD	2218562	$Li_{24}Sc_{9}B_{16}O_{40}$	S71	1.7%	218.1
$Li_1 Nb_2 In_1 Cl_0$	ICSD	75071	LioNbcInoCluo	S72	7.3%	334.5
Li _c W ₁ N ₄	ICSD	153620	Lio WANIC	\$73	0.1%	72.7
$L_1 Z_{n_1} A_{s_1} O_4$	ICSD	86184	LicZncAscOa	S74	6.4%	226.5
Li Ta Na	COD	1535987	Ling Tap No.	S75	0.1%	72.7
Li ₂ Sc ₂ N ₂	COD	1532734	Lia Sco Neg	\$76	-0.5%	43.6
Li ₂ Al ₂ Mo ₂ As ₂ O ₁	COD	2220995	Lio Alo Moc Asc Oro	S77	3.2%	174.5
Li, P, O.	COD	9014879	Lie Po Oro	S78	5.3%	130.9
Li-P.N.	ICSD	642182	$Li_24^2 24^{\circ}/2$	S79	0.2%	72 7
Li, Y, Si, O	ICSD	34079	LioYoSioOoo	S80	3.0%	101.8
Li ₂ Si ₂ O ₂	COD	2003027	LissSissOu	S81	41%	72 7
Li, NhaNaOa	ICSD	174443	Lic Nb No O	582	-1 7%	58.2
Li ₂ Mg ₂ P ₂ O ₄ F ₂	ICSD	426103	Lie Mge Pro CorFre	583	3.4%	72.7
Li ₂ Pt ₂ O ₂	ICSD	61218	Lie Pt Oc.	S84	2.7%	873
Li ₂ Ga ₂ B ₂ O ₂	COD	1511740	$\operatorname{Li}_{32}\operatorname{Ga}_{32}\operatorname{B}_{4}\operatorname{O}_{24}$	593	7.1%	58.2
Li, Al. Si, O.	COD	7224138	Li_{24} Gu_{8} D_{16} Gu_{48}	S86	3.1%	58.2
Li Be B.O	COD	4337787	11_{48} 1_{16} 1_{16} 0_{80}	587	2 2%	145.4
$Li_8 Dc_5 D_6 O_{18}$	ICSD	73124	$132 DC_{20} D_{24} O_{72}$	588	2.270	58.2
Li Te O	COD	1530934	Li. Te O.	589	7.2%	72.7
$I_4 I_6 I_0 I_5$	COD	9007843		590	5.1%	72.7
$L_{4}UC_{5}U_{12}$	COD	2000943	$I_{16} = 100 \times 10^{-10}$	S91	-0.7%	58.2
$L_7 N D_1 N_4$	COD	1537475	L_{156}^{10} δ_{132}^{10}	502	0.4%	72.7
$Li_3 R_1 R_2$	COD	2242045	$L_{24} L_{8} L_{16}$	502	0. 1 70 2.20%	72.7 58.2
$L_3 U a_1 D_2 U_6$	ICSD	50612	$Li_{24} Oa_8 D_{16} O_{48}$	S04	2.270	70.2 72.7
$L_2 M_1 D_1 O_4$ Li 7n P O	COD	1544380	$L_{32}^{1} L_{16}^{1} D_{16}^{1} O_{64}^{1}$	S05	3.7%	72.7
K_1 $7n_0$	ICSD	40022	$K_{16}Zn_{41} \otimes 32$	595	3.1%	72.7
$K_1 E_1 Z E_1 O_2$	ICSD	40247	$L_i \to O$	S07	13.8%	72.7 58.2
$L_6 R_1 O_6$	ICSD	67236	$Li_{48} Re_8 O_{48}$	508	3 6%	87 3
$r_2 v_1 v_4$	ICSD	416888	$r_{12}r_{6}O_{24}$	\$00	0.5%	07.3 70 7
	COD	0007821		577 S100	0.370 A 10%	145 A
$r_{3} r_{7} v_{12}$	ICED	9007031 946977	$12^{12}28^{12}48$	\$100	7.1 70 7 /0/2	70.7
$C_{1} L_{2} L_{2} U_{7}$	1030	2402// 7919719	$C_{14}LI_{8}Ia_{8}U_{28}$	S101 S102	2.4%0 0.00%	/4./ 910 1
$U_3 U_5 U_{10}$	ICED	75021	$U_{38}U_{12}D_{20}U_{40}$	S102 C102	0.0% 0.0%	210.1 50 ℃
$\underline{\text{Li}_2\text{Si}_2\text{O}_5}$	ICSD	69300	Li ₃₂ Si ₃₂ O ₈₀	S103	3.5%	72.7

Table S4 We list the structures that we find to be non-diffusive structures. This is the second of two tables

Structure	DB	DB-id	Supercell	Figure	Volume change	T ^{sim}
Li ₆ Be ₃ B ₄ O ₁₂	COD	4337786	Li ₂₄ Be ₁₂ B ₁₆ O ₄₈	S105	2.2%	72.7
$Li_1In_1Ge_1O_4$	ICSD	167518	$Li_{16}In_{16}Ge_{16}O_{64}$	S106	-0.1%	58.2
$Cs_2Li_2B_2P_4O_{15}$	ICSD	424281	$Cs_8Li_8B_8P_{16}O_{60}$	S107	5.9%	58.2
$\operatorname{Li}_{2}\operatorname{Te}_{1}^{T}\operatorname{W}_{1}^{T}\operatorname{O}_{6}^{T}$	COD	4330276	Li ₁₆ Te ₈ W ₈ O ₄₈	S108	3.0%	72.7
$Li_4Al_3Ge_3Br_1O_{12}$	ICSD	87991	Li ₈ Al ₆ Ge ₆ Br ₂ O ₂₄	S109	2.5%	72.7
$Li_2Mo_4O_{13}$	ICSD	4155	Li ₆ Mo ₁₂ O ₃₉	S110	5.9%	72.7
$Li_2 Ta_2 O_3 F_6$	ICSD	405777	Li ₂₄ Ta ₂₄ O ₃₆ F ₇₂	S111	4.5%	101.8
$Li_2Mg_1Si_1O_4$	COD	7222190	Li ₁₆ Mg ₈ Si ₈ O ₃₂	S112	2.7%	72.7
$Li_3Ba_2Nb_1N_4$	ICSD	75516	Li ₂₄ Ba ₁₆ Nb ₈ N ₃₂	S113	0.4%	58.2
$R\dot{b}_2L\dot{i}_3B_1P_4O_{14}$	ICSD	424352	Rb ₈ Li ₁₂ B ₄ P ₁₆ O ₅₆	S114	5.8%	116.3
$Li_6Zr_1Be_1F_{12}$	COD	1528861	Li ₂₄ Zr ₄ Be ₄ F ₄₈	S115	0.0%	58.2
$Li_1B_1O_2$	COD	2310701	Li ₃₂ B ₃₂ O ₆₄	S116	6.4%	72.7
$Li_2B_3P_1O_8$	COD	7031897	$Li_{16}B_{24}P_8O_{64}$	S117	7.3%	218.1
$Li_{3}AI_{1}B_{2}O_{6}$	COD	1100060	$Li_{24}Al_8B_{16}O_{48}$	S118	3.7%	87.3
Li ₁ Re ₁ O ₄	COD	1535227	$Li_{12}Re_{12}O_{48}$	S119	8.2%	145.4
$K_1 Li_1 Y_1 F_5$	ICSD	187751	K ₁₆ Li ₁₆ Y ₁₆ F ₈₀	S120	1.8%	105.3
$Li_1Nb_1O_3$	ICSD	182033	Li ₁₆ Nb ₁₆ O ₄₈	S121	2.5%	58.2

Fig. S52 MSD(t) for $Li_{16}Ce_8N_{16}$ from FPMD at 1000 K.

Fig. S53 MSD(t) for $Li_{24}Sr_{12}Ta_8O_{44}$ from FPMD at 1000 K.

Fig. S55 MSD(t) for $\rm Li_{24}Zn_4O_{16}$ from FPMD at 1000 K.

Fig. S56 MSD(t) for $Li_{64}K_{16}AI_{16}O_{64}$ from FPMD at 1000 K.

Fig. S59 MSD(t) for $Na_4Li_8B_4P_8O_{32}$ from FPMD at 1000 K.

Fig. S57 MSD(t) for $Li_8Al_4B_{20}O_{40}$ from FPMD at 1000 K.

Fig. S58 MSD(t) for $Li_8Cs_{12}Br_{20}$ from FPMD at 1000 K.

Fig. S61 MSD(t) for $Li_{16}Au_{16}F_{64}$ from FPMD at 1000 K.

Fig. S62 MSD(t) for $Li_{16}Si_{32}B_{16}O_{96}$ from FPMD at 1000 K.

Fig. S65 MSD(t) for $Li_{32}Te_{16}O_{48}$ from FPMD at 1000 K.

Fig. S63 MSD(t) for $Li_8Cd_4P_{16}O_{48}$ from FPMD at 1000 K.

Fig. S64 MSD(t) for $Li_{16}Si_{24}O_{56}$ from FPMD at 1000 K.

Fig. S67 MSD(t) for $Sr_{12}Li_{24}Si_{24}N_{48}$ from FPMD at 1000 K.

Fig. S68 MSD(t) for Li₃Y₃Mo₉O₂₄ from FPMD at 1000 K.

Fig. S71 MSD(t) for $Li_{24}Sc_8B_{16}O_{48}$ from FPMD at 1000 K.

Fig. S69 MSD(t) for Li₁₂Mo₆O₂₄ from FPMD at 1000 K.

Fig. S70 MSD(t) for $Li_{24}Pd_{12}O_{24}$ from FPMD at 1000 K.

Fig. S73 MSD(t) for $Li_{24}W_4N_{16}$ from FPMD at 1000 K.

Fig. S74 MSD(t) for $Li_6Zn_6As_6O_{24}$ from FPMD at 1000 K.

Fig. S75 MSD(t) for $Li_{32}Ta_8N_{24}$ from FPMD at 1000 K.

Fig. S76 MSD(t) for $Li_{24}Sc_8N_{16}$ from FPMD at 1000 K.

Fig. S79 MSD(t) for $Li_{56}P_8N_{32}$ from FPMD at 1000 K.

Fig. S80 MSD(t) for $\text{Li}_8\text{Y}_8\text{Si}_8\text{O}_{32}$ from FPMD at 1000 K.

Fig. S83 MSD(t) for $Li_{36}Mg_{12}P_{16}O_{64}F_{12}$ from FPMD at 1000 K.

Fig. S81 MSD(t) for $Li_{16}Si_{16}O_{40}$ from FPMD at 1000 K.

Fig. S84 MSD(t) for $Li_{32}Pt_4O_{24}$ from FPMD at 1000 K.

Fig. S85 MSD(t) for $Li_{24}Ga_8B_{16}O_{48}$ from FPMD at 1000 K.

Fig. S86 MSD(t) for $Li_{48}AI_{16}Si_{16}O_{80}$ from FPMD at 1000 K.

Fig. S89 MSD(t) for $Li_{16}Te_4O_{20}$ from FPMD at 1000 K.

Fig. S87 MSD(t) for $Li_{32}Be_{20}B_{24}O_{72}$ from FPMD at 1000 K.

Fig. S91 MSD(t) for $Li_{56}Nb_8N_{32}$ from FPMD at 1000 K.

Fig. S92 MSD(t) for $Li_{24}AI_8N_{16}$ from FPMD at 1000 K.

Fig. S95 MSD(t) for $Li_{16}Zn_4P_8O_{32}$ from FPMD at 1000 K.

Fig. S93 MSD(t) for $Li_{24}Ga_8B_{16}O_{48}$ from FPMD at 1000 K.

Fig. S94 MSD(t) for $Li_{32}AI_{16}B_{16}O_{64}$ from FPMD at 1000 K.

Fig. S97 MSD(t) for $Li_{48}Te_8O_{48}$ from FPMD at 1000 K.

Fig. S98 MSD(t) for $Li_{12}W_6O_{24}$ from FPMD at 1000 K.

Fig. S101 MSD(t) for Sr₄Li₈Ta₈O₂₈ from FPMD at 1000 K.

Fig. S99 MSD(t) for Sr₄Li₁₆P₈ from FPMD at 1000 K.

Fig. S100 MSD(t) for $Li_{12}B_{28}O_{48}$ from FPMD at 1000 K.

Fig. S103 MSD(t) for $Li_{24}Ba_{16}Ta_8N_{32}$ from FPMD at 1000 K.

Fig. S104 MSD(t) for $Li_{32}Si_{32}O_{80}$ from FPMD at 1000 K.

Fig. S107 MSD(t) for $Cs_8Li_8B_8P_{16}O_{60}$ from FPMD at 1000 K.

Fig. S105 MSD(t) for $Li_{24}Be_{12}B_{16}O_{48}$ from FPMD at 1000 K.

Fig. S106 MSD(t) for $Li_{16}In_{16}Ge_{16}O_{64}$ from FPMD at 1000 K.

Fig. S109 MSD(t) for $Li_8Al_6Ge_6Br_2O_{24}$ from FPMD at 1000 K.

Fig. S110 MSD(t) for $Li_6Mo_{12}O_{39}$ from FPMD at 1000 K.

Fig. S113 MSD(t) for $Li_{24}Ba_{16}Nb_8N_{32}$ from FPMD at 1000 K.

Fig. S111 MSD(t) for $Li_{24}Ta_{24}O_{36}F_{72}$ from FPMD at 1000 K.

Fig. S112 MSD(t) for $Li_{16}Mg_8Si_8O_{32}$ from FPMD at 1000 K.

Fig. S115 MSD(t) for $Li_{24}Zr_4Be_4F_{48}$ from FPMD at 1000 K.

Fig. S116 MSD(t) for $Li_{32}B_{32}O_{64}$ from FPMD at 1000 K.

Fig. S117 MSD(t) for $Li_{16}B_{24}P_8O_{64}$ from FPMD at 1000 K.

Fig. S118 MSD(t) for $Li_{24}AI_8B_{16}O_{48}$ from FPMD at 1000 K.

Fig. S119 MSD(t) for $Li_{12}Re_{12}O_{48}$ from FPMD at 1000 K.

Fig. S120 MSD(t) for $K_{16}Li_{16}Y_{16}F_{80}$ from FPMD at 1000 K.

Fig. S121 MSD(t) for Li₁₆Nb₁₆O₄₈ from FPMD at 1000 K.

6 Structures diffusive in pinball model (group D)

Structure	DB	DB-id	Supercell	Volume change
Li ₄ Mo ₃ O ₈	ICSD	84602	Li ₂₄ Mo ₁₈ O ₄₈	5.8%
$Li_1Ta_1Si_1O_5$	COD	1534486	$Li_4Ta_4Si_4O_{20}$	3.1%
$Li_2P_2Pd_1O_7$	COD	1000333	$Li_8P_8Pd_4O_{28}$	14.9%
$N\bar{a}_1\bar{L}\bar{i}_2\bar{P}_1O_4$	COD	9004248	$Na_{8}Li_{16}P_{8}O_{32}$	3.9%
$Ba_1Na_1Li_3B_6O_{12}$	ICSD	423774	$Ba_2Na_2Li_6B_{12}O_{24}$	2.9%
$Na_1Li_1B_4O_7$	ICSD	416956	Na ₄ Li ₄ B ₁₆ O ₂₈	4.2%
$Na_1Li_2B_1O_3$	COD	1511223	Na ₁₆ Li ₃₂ B ₁₆ O ₄₈	2.8%
$Li_1Au_1S_4O_{14}$	COD	4326716	Li ₄ Au ₄ S ₁₆ O ₅₆	22.1%
$Li_{10}B_{14}Cl_2O_{25}$	COD	1530960	$Li_{10}B_{14}Cl_2O_{25}$	1.8%
Li ₁ Au ₁ I ₄	COD	1510187	Li ₈ Au ₈ I ₃₂	8.4%
$Li_5La_3Nb_2O_{12}$	ICSD	68251	Li ₂₀ La ₁₂ Nb ₈ O ₄₈	2.4%
$Li_1Zr_2As_3O_{12}$	ICSD	190656	Li ₂ Zr ₄ As ₆ O ₂₄	4.0%
$Li_1Al_1Ge_1O_5$	COD	1526845	Li ₈ Al ₈ Ge ₈ O ₄₀	-6.3%
$Li_3Sc_1F_6$	COD	1535801	Li ₁₈ Sc ₆ F ₃₆	4.0%
Li ₁ Nb ₃ Cl ₈	ICSD	50232	$Li_4Nb_{12}Cl_{32}$	5.8%

Table S5 Structures that are diffusive in the pinball model, but where we could not estimate the diffusion from FPMD (group D)