Electronic Supplementary Information for

Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes

enhances the electrocatalytic activity for oxygen evolution

Huabin Zhang,^a Wei Zhou,^b Juncai Dong,^c Xuefeng Lu^a and Xiong Wen (David) Lou^{*a}

^{*a*} School of Chemical and Biomedical Engineering, Nanyang Technological University,62 Nanyang Drive, Singapore, 637459, Singapore.

E-mail: xwlou@ntu.edu.sg, davidlou88@gmail.com; Web: http://www.ntu.edu.sg/home/xwlou/

^b Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, China.

^{*c*} Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

Fig. S1 (a) FESEM image and (b, c) TEM images of Fe-Co PBA nanocubes. (d) FESEM image and (e, f) TEM images of Fe-Co-P nanocubes.

Fig. S2 (a, b) FESEM images and (c) TEM image of Fe-Fe PBA nanocubes. (d, e) FESEM images and (f) TEM image of Fe-P nanocubes.

Fig. S3 EDX spectra of (a) Fe-Co PBA, (b) Fe-Fe PBA, (c) Fe-Co-P and (d) Fe-P.

Fig. S4 XRD patterns of (a) Fe-Co PBA nanoboxes, (b) Fe-Co PBA nanocubes and (c) Fe-Fe PBA nanocubes.

Fig. S5 XRD patterns of (a) Fe-Co-P nanoboxes, (b) Fe-Co-P nanocubes and (c) Fe-P nanocubes.

Fig. S6 XPS spectra of (a) Co 2p and (b) Fe 2p of Fe-Co-P.

Fig. S7 (a) XPS Fe 2p spectra of Fe-P. (b) Comparison of the Fe 2p spectra between Fe-Co-P and Fe-P. The shift of the Fe 2p spectrum clearly demonstrates the occurring of the electronic coupling between the Fe and Co atoms in Fe-Co-P.

Fig. S8 (a) N₂ adsorption-desorption isotherms for Fe-Co-P nanocubes and Fe-Co-P nanoboxes. (b) Pore size distribution curves for Fe-Co-P nanocubes and Fe-Co-P nanoboxes.

Fig. S9 Experimental and best-fitted EXAFS spectra of Fe-Co-P nanoboxes in (a) R space and (b) K space. The experimentally measured spectra match well with the calculated spectra for the sample. The best-fit parameters are shown in Table S1.

Fig. S10 WT for the k^3 -weighted EXAFS signals of (a) Co foil and (b) Fe-P.

Fig. S11 LSV curves of Fe-Co-P nanoboxes with *iR*-compensation and without *iR*-compensation.

Fig. S12 Cyclic voltammetry curves at different scan rates (mV s⁻¹) for the (a) Fe-Co-P nanoboxes, (b) Fe-Co-P nanocubes and (c) Fe-P nanocubes.

Fig. S13 Capacitive $\Delta j/2 = (j_a - j_c)/2$ as a function of the scan rate for Fe-Co-P nanoboxes, Fe-Co-P nanocubes and Fe-P nanocubes. j_a represents the anodic current density; j_c represents the cathodic current density.

Fig. S14 Nyquist plots of Fe-P nanocubes, Fe-Co-P nanocubes and Fe-Co-P nanoboxes.

Fig. S15 The two-time constant serial (2TS) model is used for fitting the impedance spectra of Fe-P nanocubes, Fe-Co-P nanocubes and Fe-Co-P nanoboxes. The R_1 ||CPE1 subcircuit is related to the resistance of the solution filling the pores (R_1 , higher frequencies), while the R_2 ||CPE2 subcircuit refers to charge transfer kinetics (R_2 , lower frequencies).

Fig. S16 (a-c) FESEM and (d-f) TEM images of Fe-Co-P nanoboxes after the electrocatalysis.

Fig. S17 XPS Co 2p spectra of Fe-Co-P nanoboxes before and after catalysis.

Fig. S18 Chronopotentiometry curve of Fe-Co-P nanoboxes at low current intensity of 1 mA cm⁻², monitoring the change of the structure.

Fig. S19 Chronopotentiometry response at the current density of 30 mA cm⁻² for Fe-Co-P-O nanoboxes, no *iR*-compensation is applied.

Fig. S20 Time dependence of the current density of Fe-Co-P-O nanoboxes under the fixed potential (1.55 V), no *iR*-compensation is applied.

Fig. S21 LSV curves of the Fe-Co-P-O nanoboxes for the initial and the 1000th cycle.

Fig. S22 PDOS for Fe-Co-P-O, Fe-Co-P and Fe-P.

Fig. S23 Calculated distribution of charge densities of (a) Fe-P and (b) Fe-Co-P. (c) Enlarged view of the redistribution for the electron density of Fe-Co-P.

Reaction coordinate

Fig. S24 Free energy diagram for OER over Co sites.

Sample	Shell	N	R (Å)	σ^2 (Å ²)	$\Delta E_0 (\mathrm{eV})$	R _f , %
Fe foil ^b	Fe-Fe	8	2.47	0.006	0.7	0.01
	Fe-Fe	6	2.85	0.007		
Co foil b	Co-Co	12	2.49	0.007	0.7	0.01
Fe-P: Fe^c	Fe-P	5.5	2.27	0.012	-0.4	0.01
Fe-Co-P: Fe ^c	Fe-P	4.7	2.26	0.013	0.6	0.02
Fe-Co-P: Co ^d	Co-P	4.5	2.24	0.008	-5.5	0.03

Table S1. K-edge EXAFS curve fitting parameters.^a

^{*a*}N, coordination number; *R*, distance between absorber and backscatter atoms; σ^2 , Debye–Waller factor to account for both thermal and structural disorders; ΔE_0 , inner potential correction; *R*-factor (R_f , %) indicates the goodness of the fitting. Errors are given in brackets. S_0^2 was fixed to be 0.9 both for Fe and Co fitting. Bold numbers indicate fixed coordination number according to the crystal structure. ^{*b*} Fitting range: $3.2 \le k$ (/Å) ≤ 12.5 and $1.4 \le R$ (Å) ≤ 2.7 .

^{*c*} Fitting range: $2.0 \le k \; (/\text{Å}) \le 12.0 \text{ and } 1.0 \le R \; (\text{Å}) \le 2.6.$

^{*d*} Fitting range: $2.8 \le k \; (/\text{Å}) \le 12.0 \text{ and } 1.0 \le R \; (\text{Å}) \le 2.6.$

Catalyst	η at 10 mA cm ⁻² (mV)	Tafel slope (mV decade ⁻¹)	Reference
MnCoP nanoparticles	330	95	J. Am. Chem. Soc. 2016 , 138, 4006
Co-P film	345	47	Angew. Chem. Int. Ed. 2015, 54, 6251
NiCoP@NF	280	87	Nano Lett. 2016, 16, 7718
Nanoporous (Co0.52Fe0.48)2P	338	30	Energy Environ. Sci. 2016, 9, 2257
Ni ₂ P nanoparticles	290	47	Energy Environ. Sci. 2015, 8, 2347
Ni5P4	320	40	Angew. Chem. Int. Ed. 2015, 54, 12361
Mn-Co oxyphosphide	370	66	Angew. Chem. Int. Ed. 2017, 56, 2386
NiCoP/C nanoboxes	330	96	Angew. Chem. Int. Ed. 2017, 56, 3897
Fe-Co-P nanoboxes	269	31	This work

 Table S2. Summary of various metal phosphide-based catalysts for OER.

Table S3. Impedance parameters obtained by fitting the experimental data in Figure S14.

Electrocatalyst	$R_{s}(\Omega \text{ cm}^{2})$	$R_1(\Omega \text{ cm}^2)$	$R_2 (\Omega \text{ cm}^2)$
Fe-P nanocubes	3.78	37.57	18.68
Fe-Co-P nanocubes	3.15	3.46	13.85
Fe-Co-P nanoboxes	3.65	1.37	11.39

Sample	Shell	N	R (Å)	σ^2 (Å ²)	$\Delta E_0 (\mathrm{eV})$	$R_{f}, \%$
Before reaction ^b	Fe–O ^c	1.8	2.01	0.005	3.1	0.1
	Fe–P	4.4	2.31	0.015		
After reaction ^d	Fe–O	4.2	1.98	0.009	2.8	0.1
	Fe–P	2.1	2.30	0.017		

Table S4. K-edge EXAFS curve fitting parameters of Fe-Co-P.^a

^{*a*}N, coordination number; *R*, distance between absorber and backscatter atoms; σ^2 , Debye–Waller factor to account for both thermal and structural disorders; ΔE_0 , inner potential correction; *R*-factor (*R_f*, %) indicates the goodness of the fit. Errors are given in brackets. ^{*b*} Fitting range: $2.0 \le k$ (/Å) ≤ 11.5 and $1.0 \le R$ (Å) ≤ 2.2 . ^{*c*}The sample reacted with the alkaline electrolyte before catalysis, resulting in the coordination of O atoms. ^{*d*} Fitting range: $2.0 \le k$ (/Å) ≤ 11.5 and $1.0 \le R$ (Å) ≤ 2.2 .