| 1        | Supplementary Information for                                                                                                                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | Mutually-Dependent Kinetics and Energetics of Photocatalyst/Co-Catalyst/                                                                               |
| 3        | Two-Redox Liquid Junctions                                                                                                                             |
| 4        |                                                                                                                                                        |
| 5        | Zhenhua Pan <sup>ab †</sup> , Rito Yanagi <sup>ab †</sup> , Qian Wang <sup>c</sup> , Xin Shen <sup>ab</sup> , Qianhong Zhu <sup>ab</sup> , Yudong      |
| 6        | Xue <sup>abd</sup> , Jason A. Röhr <sup>ab</sup> , Takashi Hisatomi <sup>e</sup> , Kazunari Domen <sup>ef</sup> , Shu Hu <sup>*ab</sup>                |
| 7        | <sup>a</sup> Department of Chemical and Environmental Engineering, Yale University, New                                                                |
| 8        | Haven, CT 06520 (USA)                                                                                                                                  |
| 9        | <sup>b</sup> Energy Sciences Institute, Yale University, 810 West Campus Drive, West Haven, CT                                                         |
| 10       | 06516 (USA)                                                                                                                                            |
| 11<br>12 | <sup>c</sup> Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan) |
| 13       | <sup>d</sup> National Engineering Laboratory for Hydrometallurgical Cleaner Production                                                                 |
| 14       | Technology CAS Key Laboratory of Green Process and Engineering Institute of                                                                            |
| 15       | Process Engineering Chinese Academy of Sciences Beijing 100190 (China)                                                                                 |
| 16       | <sup>e</sup> Research Initiative for Supra-Materials Shinshu University 4-17-1 Wakasato                                                                |
| 17       | Nagano-shi, Nagano 380-8553, (Japan)                                                                                                                   |
| 18       | <sup>f</sup> Office of University Professor, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,                                                          |
| 19       | Tokyo 113-8656 (Japan)                                                                                                                                 |
| 20       | <sup>†</sup> Both authors contributed equally to this manuscript.                                                                                      |
| 21       |                                                                                                                                                        |
| 22       |                                                                                                                                                        |
| 23       |                                                                                                                                                        |
| 24       |                                                                                                                                                        |
| 25       |                                                                                                                                                        |
| -c<br>26 |                                                                                                                                                        |
| 20       |                                                                                                                                                        |
| 27       |                                                                                                                                                        |
| 20       |                                                                                                                                                        |
| 30       |                                                                                                                                                        |
| 31       |                                                                                                                                                        |
| 31       |                                                                                                                                                        |
| 22       |                                                                                                                                                        |
| 23<br>24 |                                                                                                                                                        |
| 24<br>25 |                                                                                                                                                        |
| 35       |                                                                                                                                                        |
| 36       |                                                                                                                                                        |

# **Contents**

| 38             | Materials and Methods                                                                                                                                                                                                       |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39             | <b>1. Single-crystalline SrTiO<sub>3</sub> photoelectrode preparation.</b>                                                                                                                                                  |
| 40<br>41       | <b>2.</b> Al-doped SrTiO <sub>3</sub> particles, particle-based Al-doped SrTiO <sub>3</sub> and Al-doped SrTiO <sub>3</sub> /RhCrO <sub>x</sub> photoelectrode preparation                                                  |
| 42             | <b>3.</b> Ta <sub>3</sub> N <sub>5</sub> photoelectrodes and Ta <sub>3</sub> N <sub>5</sub> particles preparation                                                                                                           |
| 43             | 4. Co-catalyst deposition on photoelectrodes                                                                                                                                                                                |
| 44             | 5. Co-catalyst deposition on photocatalysts                                                                                                                                                                                 |
| 45             | 6. Co-catalyst deposition on F-doped SnO <sub>2</sub> electrodes7                                                                                                                                                           |
| 46             | 7. Electrochemical measurements                                                                                                                                                                                             |
| 47             | 8. Photocatalytic water splitting activity measurements                                                                                                                                                                     |
| 48             | 9. Characterizations of materials                                                                                                                                                                                           |
| 49             | 10. Glossary                                                                                                                                                                                                                |
| 50             | Supplementary Discussion                                                                                                                                                                                                    |
| 51             | <b>S1 Kinetic model of SrTiO<sub>3</sub>/one-redox liquid junctions</b> 10                                                                                                                                                  |
| 52             | S2 Energetics of a SrTiO <sub>3</sub> /Pt junction in water11                                                                                                                                                               |
| 53             | S3 Steady-state potential of SrTiO <sub>3</sub> /Pt contacting a O <sub>2</sub> /H <sub>2</sub> O couple in aqueous solution13                                                                                              |
| 54             | S4 Light intensity dependence of SrTiO <sub>3</sub> /co-catalyst/water junctions14                                                                                                                                          |
| 55             | <b>S5 Band structures of single-crystalline SrTiO</b> <sub>3</sub> 15                                                                                                                                                       |
| 56             | S6 Charge transfer at SrTiO <sub>3</sub> /water junctions in the dark15                                                                                                                                                     |
| 57<br>58       | S7 Electron-transfer kinetics at a SrTiO <sub>3</sub> /Pt/water junction under a flow of $(H_2 + N_2)$ or $(O_2 + N_2)$ mixture                                                                                             |
| 59<br>60       | <b>S8</b> Quantitative fitting for the kinetic rate law of the forward electron transfer from SrTiO <sub>3</sub> /Pt to O <sub>2</sub> /H <sub>2</sub> O                                                                    |
| 61             | S9 Hole quasi-Fermi levels and estimation of photovoltages19                                                                                                                                                                |
| 62             | S10 Effects of back contacts on the OCP measurement of Photocatalyst Particles20                                                                                                                                            |
| 63<br>64       | S11 Charge-separation and charge-transfer processes of SrTiO <sub>3</sub> :Al/RhCrO <sub>x</sub> vs.<br>SrTiO <sub>3</sub> :Al/Pt                                                                                           |
| 65             | Supplementary Figures                                                                                                                                                                                                       |
| 66<br>67       | Figure S1. Charge-transfer process at SrTiO <sub>3</sub> /one-redox liquid junctions and steady-state current-potential ( <i>J-E</i> ) behaviour of SrTiO <sub>3</sub> photoelectrodes in the dark and under illumination23 |
| 68<br>69<br>70 | Figure S2. Postulated energy diagrams of $SrTiO_3/Pt/water junctions in water purged by a mixture of H2 and O2 gases: (a) and (b) in the limit of a buried junction; (c) and (d) in the limit of an adaptive junction$      |
| 71             | Figure S3. AFM images of bare SrTiO <sub>3</sub> and SrTiO <sub>3</sub> /Pt25                                                                                                                                               |

| 72         | Figure S4. Log–linear plots of $J_{TE}$ and $J_{PW}$ vs. compositions of (H <sub>2</sub> + O <sub>2</sub> ) gas mixture26                                                                                    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73<br>74   | Figure S5. A proposed model for the charge-transfer process at a SrTiO <sub>3</sub> /Pt/water junction under illumination                                                                                    |
| 75<br>76   | Figure S6. <i>J–E</i> curves for a single-crystalline SrTiO <sub>3</sub> /Pt photoelectrode under illumination with either H <sub>2</sub> or O <sub>2</sub> flow                                             |
| 77<br>78   | Figure S7. Schematics of a three-electrode setup purged with (a) O <sub>2</sub> or (b) H <sub>2</sub> for measuring the light-intensity dependent photocurrents                                              |
| 79<br>80   | Figure S8. Current density measured at SrTiO <sub>3</sub> /co-catalyst/water junctions as a function of light intensity, with the SrTiO <sub>3</sub> back contacts poised at 0 V vs. RHE                     |
| 81<br>82   | Figure S9. Open-circuit potential of single-crystalline SrTiO <sub>3</sub> as a function of illumination intensity                                                                                           |
| 83         | Figure S10. Energy diagram of single-crystalline SrTiO <sub>3</sub> 29                                                                                                                                       |
| 84<br>85   | Figure S11. OCPs of an FTO/Pt electrode in an aqueous electrolyte purged with (a) a $(H_2 + O_2)$ gas mixture, (b) a $(H_2 + N_2)$ gas mixture or (c) a $(O_2 \text{ and } N_2)$ gas mixture                 |
| 86<br>87   | Figure S12. OCPs of a SrTiO <sub>3</sub> /Pt photoelectrode in an aqueous electrolyte purged with (a) a ( $H_2$ + $N_2$ ) gas mixture or (b) a ( $O_2$ + $N_2$ ) gas mixture                                 |
| 88<br>89   | Figure S13. OCPs of a $SrTiO_3/(Cr_2O_3/Pt)$ photoelectrode in an aqueous electrolyte purged with a $(H_2 + N_2)$ gas mixture                                                                                |
| 90         | Figure S14. Log-linear plots of J vs. E for SrTiO <sub>3</sub> /Pt electrodes with a (H <sub>2</sub> + O <sub>2</sub> ) gas mixture. 32                                                                      |
| 91<br>92   | Figure S15. Log-linear plots of $J_{2,\text{forward}}$ vs. $(E_0 - E)$ for SrTiO <sub>3</sub> /Pt electrodes with a (H <sub>2</sub> + O <sub>2</sub> ) gas mixture.                                          |
| 93<br>94   | Figure S16. Linear fitting of log-linear plot of $J_{2,forward}$ vs. $(E_0 - E)$ for SrTiO <sub>3</sub> /Pt electrodes with a (H <sub>2</sub> + O <sub>2</sub> ) gas mixture                                 |
| 95         | Figure S17. Values of $qk_2[O_{2(ad)}]n_{s0}$ from fitting and OCP measurement                                                                                                                               |
| 96<br>97   | Figure S18. OCPs of a Ti layer by sputtering in an aqueous electrolyte purged with a $(H_2 + O_2)$ gas mixture                                                                                               |
| 98<br>99   | Figure S19. (a) Plan-view and (b) cross-sectional SEM images of a Ta <sub>3</sub> N <sub>5</sub> film on a Ta substrate.                                                                                     |
| 100<br>101 | Figure S20. OCPs of a Ti/SrTiO <sub>3</sub> :Al photoelectrode in an aqueous electrolyte purged with (a) a $(H_2 + O_2)$ gas mixture, (b) a $(H_2 + N_2)$ gas mixture, or (c) a $(O_2 + N_2)$ gas mixture    |
| 102<br>103 | Figure S21. A time course of gas evolution during overall water splitting over SrTiO <sub>3</sub> :Al particles.                                                                                             |
| 104<br>105 | Figure S22. OCPs of a Ti/SrTiO <sub>3</sub> :Al/Pt photoelectrode in an aqueous electrolyte purged with (a) a $(H_2 + O_2)$ gas mixture, (b) a $(H_2 + N_2)$ gas mixture, or (c) a $(O_2 + N_2)$ gas mixture |
| 106<br>107 | Figure S23. Energy diagrams of photocatalyst/co-catalyst/water junction in the dark with the electrolyte purged by (a) O <sub>2</sub> and (b) H <sub>2</sub>                                                 |
| 108<br>109 | Figure S24. Time courses of gas evolution during overall water splitting over SrTiO <sub>3</sub> :Al/Pt particles in H <sub>2</sub> and O <sub>2</sub> atmosphere                                            |
|            | •                                                                                                                                                                                                            |

| 110<br>111               | Figure S25. A time course of gas evolution during overall water splitting over SrTiO <sub>3</sub> :Al/RhCrO <sub>x</sub> particles                                                                                                                                                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112<br>113               | Figure S26. OCPs of a Ti/SrTiO <sub>3</sub> :Al/RhCrO <sub>x</sub> photoelectrode in an aqueous electrolyte purged with (a) a $(H_2 + O_2)$ gas mixture, (b) a $(H_2 + N_2)$ gas mixture, or (c) a $(O_2 + N_2)$ gas mixture41                                                                                                                                            |
| 114<br>115<br>116<br>117 | Figure S27. <i>J-E</i> curves for FTO/Pt and FTO/RhCrO <sub>x</sub> for (a) $H_2$ evolution in the electrolyte purged with $H_2$ , and (d) $O_2$ reduction in the electrolyte purged with $O_2$ . Tafel plots for (b) and (c) the $H_2$ evolution performance of Pt and RhCrO <sub>x</sub> , and (e) and (f) the $O_2$ reduction performance of Pt and RhCrO <sub>x</sub> |
| 118<br>119               | Figure S28. Schematic energy diagrams of (a) SrTiO <sub>3</sub> :Al/Pt/water junction and (b) SrTiO <sub>3</sub> :Al/RhCrO <sub>x</sub> /water junction under illumination                                                                                                                                                                                                |
| 120<br>121<br>122        | Figure S29. OCPs of (a) Ta/Ta <sub>3</sub> N <sub>5</sub> , and (b) Ta/Ta <sub>3</sub> N <sub>5</sub> /Pt photoelectrodes in an aqueous electrolyte,<br>and (c) Ta/Ta <sub>3</sub> N <sub>5</sub> /Pt in 20 vol% MeOH aqueous solution purged with a $(H_2 + O_2)$ gas mixture<br>44                                                                                      |
| 123<br>124               | Figure S30. Time courses of gas evolution during overall water splitting and H <sub>2</sub> evolution during half reaction in 20 vol% MeOH aqueous solution over Ta <sub>3</sub> N <sub>5</sub> /Pt44                                                                                                                                                                     |
| 125                      | Figure S31. XRD patterns of (a) $SrTiO_3$ : Al particles, and (b) $Ta_3N_5/Ta$ and $Ta_3N_5$ particles45                                                                                                                                                                                                                                                                  |
| 126<br>127               | Figure S32. (a) Plan-view and (b) cross-sectional SEM images of SrTiO <sub>3</sub> :Al particles on a Ti substrate45                                                                                                                                                                                                                                                      |
| 128<br>129               | Figure S33. Schematic of electrochemical cell. H <sub>2</sub> (g), O <sub>2</sub> (g) and N <sub>2</sub> (g) were used for mixed gas.                                                                                                                                                                                                                                     |
| 130                      | Reference                                                                                                                                                                                                                                                                                                                                                                 |
| 131                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 132                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 133                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 134                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 135                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 136                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 137                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 139                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 140                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 141                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 142                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 143                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 144                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 144                      |                                                                                                                                                                                                                                                                                                                                                                           |
| 145                      |                                                                                                                                                                                                                                                                                                                                                                           |

#### 147 Materials and Methods

1. Single-crystalline SrTiO<sub>3</sub> photoelectrode preparation. Single crystals of (100)-148 oriented SrTiO<sub>3</sub> were obtained from MTI corporation. To achieve n-type doping, the 149 sample was heated at 1000 °C for 4 h under a flow of H<sub>2</sub> gas and was subsequently 150 allowed to cool down naturally.<sup>1</sup> The colour of the resulting crystal was lightly black 151 152 due to the introduction of oxygen vacancies and/or titanium interstitials. The freeelectron concentration was estimated to be 1×10<sup>18</sup> cm<sup>-3</sup>.<sup>2</sup> A Ga:In eutectic mixture was 153 pasted on the back of the sample. A Sn wire was then connected to the back with Ag 154 glue and the electrode was insulated with epoxy. Prior to all experiments, the electrode 155 was etched in 10 vol% HNO<sub>3</sub> (aq) for 1 min, followed by rinsing with deionized water. 156 157

2. Al-doped SrTiO<sub>3</sub> particles, particle-based Al-doped SrTiO<sub>3</sub> and Al-doped 158  $SrTiO_3/RhCrO_x$  photoelectrode preparation. Al-doped  $SrTiO_3$  particles (denoted as 159 SrTiO<sub>3</sub>:Al) were prepared using a flux method.<sup>3</sup> SrTiO<sub>3</sub> (Wako Pure Chemicals 160 Industries, Ltd., 99.9%), Al<sub>2</sub>O<sub>3</sub> (Sigma-Aldrich Co., LLC., nanoparticle), and SrCl<sub>2</sub> 161 (Kanto Chemicals Co., Inc., 98.0%, anhydrous) were mixed at a molar ratio of 162 1:0.02:10 and the mixture was heated at 1100 °C for 10 h in air. The product was 163 washed in deionized water to obtain SrTiO<sub>3</sub>:Al. Successful synthesis of SrTiO<sub>3</sub>:Al was 164 confirmed by a X-ray diffraction (XRD) as shown in Figure S31a. The free-electron 165 concentration of SrTiO<sub>3</sub>:Al was less than  $1.0 \times 10^{17}$  cm<sup>-3</sup>.<sup>4</sup> Particle-based SrTiO<sub>3</sub>:Al 166 electrodes (denoted as Ti/SrTiO<sub>3</sub>:Al) were prepared by immobilizing SrTiO<sub>3</sub>:Al 167 particles onto a 5 µm-thick conductive Ti layer using a particle transfer method.<sup>5</sup> 168 SrTiO<sub>3</sub>:Al particles (0.01 g) were dispersed in isopropanol (0.5 mL) by ultrasonication. 169 The suspension was drop-cast onto a glass substrate and was allowed to dry naturally. 170 171 A 5  $\mu$ m-thick Ti layer was deposited on the particles-on-glass substrate by radiofrequency magnetron sputtering. A second glass substrate with adhesive epoxy was 172 used to lift off the Ti layer containing the particles. The immobilization of SrTiO<sub>3</sub>:Al 173 particles on a Ti layer was confirmed by scanning electron microscopy (SEM) as shown 174 in Figure S32. A Ga:In eutectic mixture was pasted on the Ti layer. A Sn wire was 175 176 connected to the region with Ga:In mixture by Ag glue and the electrode was insulated with epoxy. Excess particles loosely attached to the particle photoelectrodes were 177 removed by ultrasonication in deionized water.  $RhCrO_x$  as a co-catalyst was loaded 178 onto the SrTiO<sub>3</sub>:Al particles before assembling them to make photoelectrodes. Particle-179 based SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> electrodes (denoted as Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub>) were prepared 180 following the same procedures as the SrTiO<sub>3</sub>:Al electrodes. 181

3. Ta<sub>3</sub>N<sub>5</sub> photoelectrodes and Ta<sub>3</sub>N<sub>5</sub> particles preparation. A native TaO<sub>x</sub> layer can 182 form on the surface of Ta<sub>3</sub>N<sub>5</sub> particles and this oxide layer would reduce the 183 conductivity if the particles were loaded on a conductive substrate by a particle transfer 184 method similar to that for SrTiO<sub>3</sub>.<sup>6</sup> Therefore, Ta<sub>3</sub>N<sub>5</sub> thin films were directly grown on 185 a Ta substrate by a sequential sputtering and nitridation process.<sup>6</sup> An 500 nm-thick TaO<sub>x</sub> 186 187 particle film was sputtered on a Ta substrate by radio-frequency magnetron sputtering. The Ta/TaO<sub>x</sub> film was nitridated at 800 °C for 1 h in an NH<sub>3</sub> flow (300 mL min<sup>-1</sup>) with 188 a temperature ramp of 10 °C min<sup>-1</sup>. The resulting thin film is denoted as Ta/Ta<sub>3</sub>N<sub>5</sub>. Its 189 morphology was confirmed by SEM as shown in Figure S19. A Ga:In eutectic mixture 190 was pasted onto the back side of the Ta layer. A Sn wire was connected to the region 191 192 with Ga:In mixture by Ag glue and the electrode was packaged with insulating epoxy. Ta<sub>3</sub>N<sub>5</sub> particles were prepared by thermal nitridation of Ta<sub>2</sub>O<sub>5</sub> (Rare Metallic Co., Ltd., 193 99.99%) under the same condition. The crystal structures of Ta<sub>3</sub>N<sub>5</sub> thin film on Ta 194 substrate and the Ta<sub>3</sub>N<sub>5</sub> particles were confirmed by XRD as shown in Figure S31b. 195 The resulting charge-carrier concentration was previously reported to be ca.  $1.0 \times 10^{19}$ 196  $cm^{-3}.7$ 197

198

4. Co-catalyst deposition on photoelectrodes. Pt was electro-deposited on single-199 crystalline SrTiO<sub>3</sub> electrodes (donated as SrTiO<sub>3</sub>/Pt) and Ta/Ta<sub>3</sub>N<sub>5</sub> electrodes (donated 200 as Ta/Ta<sub>3</sub>N<sub>5</sub>/Pt) using a 10 mg·mL<sup>-1</sup> H<sub>2</sub>PtCl<sub>6</sub> (Aldrich, 99.9%) aqueous solution. 201 During the deposition process, the applied potential was cycled from -0.3 to 0.1 V vs. 202 SCE twice. To avoid the deposition of Pt on the Ti layer, Pt was photo-deposited on 203 Ti/SrTiO<sub>3</sub>:Al electrodes using the same Pt source (donated as Ti/SrTiO<sub>3</sub>:Al/Pt). The 204 electrodes were illuminated using a laser-driven Xe lamp ( $\lambda = 170 \sim 800$  nm, EQ-99X 205 LDLS, Energetiq Technology, Inc) during the 30-min deposition process. A Cr<sub>2</sub>O<sub>3</sub> layer 206 was electrodeposited on SrTiO<sub>3</sub>/Pt (donated as SrTiO<sub>3</sub>/(Cr<sub>2</sub>O<sub>3</sub>/Pt)) using a 100 207 mg·mL<sup>-1</sup> K<sub>2</sub>CrO<sub>4</sub> (Sigma-Aldrich Co., LLC., 99%) aqueous solution. During the 208 deposition process, a potential of -1.0 V vs. SCE was applied on the electrode for 5 h. 209 The electrolyte was bubbled with N<sub>2</sub> gas for 20 minutes to purge dissolved O<sub>2</sub> before 210 211 the deposition process.

212

213 **5.** Co-catalyst deposition on photocatalysts. Pt (3 wt%) was loaded on  $SrTiO_3$ : Al 214 particles (donated as  $SrTiO_3$ :Al/Pt) and  $Ta_3N_5$  particles (donated as  $Ta_3N_5$ /Pt) by photo-215 deposition in a top-irradiation-type reaction cell. Photocatalysts (0.1 g) were dispersed

216 in 100 mL deionized water (for SrTiO<sub>3</sub>:Al) or in a 20 vol% methanol aqueous solution (for Ta<sub>3</sub>N<sub>5</sub>) containing H<sub>2</sub>PtCl<sub>6</sub> (Aldrich, 99.9%, the weight of Pt equals 3 wt% 217 photocatalysts). Prior to performing the reaction, the cell was evacuated to remove air 218 and dissolved O<sub>2</sub> in the water and was then filled with Ar. The solution was illuminated 219 for 3 h using a 300 W Xe lamp ( $\lambda > 300$  nm), equipped with an all-reflection mirror. 220 221 After photo-deposition, the suspension was filtered and the obtained particles were washed with deionized water. RhCrO<sub>x</sub> (0.1 wt% Rh and 0.1 wt% Cr) was loaded onto 222 the SrTiO<sub>3</sub>:Al particles using an impregnation method. SrTiO<sub>3</sub>:Al particles were 223 dispersed in an aqueous solution containing Na<sub>3</sub>RhCl<sub>6</sub> (Mitsuwa Chemistry Co., Ltd., 224 17.8 wt%, the weight of Rh equals 0.1 wt% SrTiO<sub>3</sub>:Al particles) and Cr(NO<sub>3</sub>)<sub>3</sub> (Kanto 225 226 Chemicals Co., Inc., 98.0 - 103.0%, the weight of Cr equals 0.1 wt% SrTiO<sub>3</sub>:Al particles). After the solution was evaporated in a water bath, the precipitated solids were 227 calcined in air at 350 °C for 1 h. 228

229

**6.** Co-catalyst deposition on F-doped SnO<sub>2</sub> electrodes. Similar to the single crystal SrTiO<sub>3</sub> electrodes, Pt was electro-deposited on F-doped SnO<sub>2</sub> (FTO) electrodes. These electrodes are denoted as FTO/Pt. RhCrO<sub>x</sub> (0.1 wt% Rh and 0.1 wt% Cr) was loaded onto the FTO electrodes by a similar impregnation method as was used for the SrTiO<sub>3</sub>:Al particles. In this case, the precursor solution was dried naturally instead of using a water bath. The resulting electrodes are denoted as FTO/RhCrO<sub>x</sub>.

236

**7. Electrochemical measurements.** The electrochemical properties of the electrodes were measured at 25 °C in a three-electrode system consisting of a working electrode, an alkaline Hg/HgO reference electrode, and a carbon rod counter electrode. The electrolyte was a 0.5 M Na<sub>2</sub>SO<sub>4</sub> (Sigma-Aldrich Co., LLC., 99%) aqueous solution at pH 12.5 adjusted by KOH (Sigma-Aldrich Co., LLC., 99.99%). The measured potentials were converted to reversible hydrogen electrode (RHE) scale according to the following equation:

244  $V_{RHE} = V_{Hg/HgO} + V_{Hg/HgO}^{\circ} + 0.0591 pH$ ,

where  $V_{Hg/HgO}$  is the measured potential vs. alkaline Hg/HgO,  $V_{Hg/HgO}^{o}$  is the formal potential of a standard alkaline Hg/HgO (1 M KOH) electrode. The electrolyte was purged with a gas mixture for 10 min prior to use. The electrochemical cell was made from Pyrex with a quartz window. A SP-300 Biologic potentiostat was used to control the potentials and record the data. The electrodes were illuminated using a laser-driven Xe lamp ( $\lambda = 170 \sim 800$  nm). A schematic diagram of the electrochemical cell is shown in Figure S33. The incident light intensity was controlled by a neutral density filter. For measuring light-intensity thresholds, the current density vs. light intensity was recorded. At zero current density, the corresponding light intensity is defined as the light intensity threshold. The electrochemical H<sub>2</sub> evolution activities of FTO/Pt and FTO/RhCrO<sub>x</sub> were measured in pure H<sub>2</sub> flow. For all OCP measurements, the error bars were  $\pm 2$  mV.

257

8. Photocatalytic water splitting activity measurements. Water splitting reaction 258 using photocatalyst particles were carried out in a top-irradiation-type reaction cell, 259 which was connected to a closed gas-circulation system. Photocatalysts (0.1 g) were 260 261 dispersed in a 100 mL deionized water (for overall water splitting) or in a 20 vol% methanol aqueous solution (for H<sub>2</sub> evolution half-reactions) using ultrasonication. Prior 262 to carrying out the reactions, the cell was evacuated to remove air and dissolved O<sub>2</sub> in 263 water. The solution was then illuminated using a 300 W Xe lamp equipped with an all-264 reflection mirror ( $\lambda > 300$  nm). The gas products were analysed by a gas chromatograph 265 (Shimadzu, GC-8A) equipped with a thermal conductivity detector. Ar was used as a 266 carrier gas. The reactor was water-cooled at around 15 °C during the water-splitting 267 reactions. 268

269

**9. Characterizations of materials.** The crystal structures were confirmed by XRD using a Rigaku SmartLab X-ray Diffractometer in a grazing incident mode, i.e., at  $\omega$  = 0.45° and with 20 between 20 – 70°. The morphology of the Pt particles, deposited on single crystal SrTiO<sub>3</sub>, was characterized by a Bruker Dimension Fast Scan Atomic Force Microscope (AFM). A peak force tapping mode and standard AFM tips were used. A Hitachi SU8230 UHR Cold Field Emission SEM was used to characterize the cross-section and surface morphologies of Ti/SrTiO<sub>3</sub>:Al and Ta/Ta<sub>3</sub>N<sub>5</sub> electrodes.

#### 278 10. Glossary

The Principle of Detailed Balance: This principle is essentially the same principle which has been used in detailed balance limit for calculating solar cell efficiencies. This principle here is used to account for all of the possible charge-transfer pathways across the semiconductor/water junction by invoking microscopic reversibility of kinetic rates, hence is distinctive to the context of electron-hole pair generation and recombination in calculating the Shockley-Queisser limit for solar cells.

286 Equilibrium: This condition only applies to "in the dark" and "in the absence of a net

current flow", which is irrelevant to photocatalysts suspended in a non-equilibrium solution with  $(H_2 + O_2)$  gas mixture; the semiconductor/co-catalyst solid-solid junction may equilibrate their electrochemical potentials, despite the co-catalyst may reach a steady-state potential with a non-equilibrium solution with  $(H_2 + O_2)$  gas mixture.

291

292 Steady State: This condition applies to both in the dark and under illumination when 293 current density and voltage become independent of time, including non-zero net 294 currents; this condition refers to the various scenarios of reaching a steady-state 295 potential and net current density when in contact with a non-equilibrium solution with 296 gas mixture.

297

(Net) Current Density: Whereas not explicitly mentioned, current density refers to thenet current density, i.e., the arithmetic sum of both forward and backward currentdensities at a specific site.

301

Forward Current Density: A local current density resulting from transfer of electrons orholes from semiconductors to electrolytes.

304

305 Backward Current Density: A local current density resulting from extraction of 306 electrons or holes from electrolytes back to semiconductors.

307

Interfacial (Total) Current Density: Arithmetic sum of both forward and backward
 current densities by integrating over all the locations across the liquid-junction interface
 310

311 Exchange Current: The absolute value of forward or backward currents at zero net

312 current density locally."

#### 313 **Supplementary Discussion**

#### S1 Kinetic model of SrTiO<sub>3</sub>/one-redox liquid junctions 314

A schematic for a liquid contact between n-type SrTiO<sub>3</sub> and a solution containing 315 a redox couple,  $A/A^-$ , is shown in Figure S1. In the dark, there will be a net flow of 316 electrons from  $SrTiO_3$  to the solution redox,  $A/A^-$  (Figure S1a). The net interfacial 317 318 electron current density can be expressed as

319 
$$J_{\rm n} = -qk_{\rm n}[{\rm A}](n_{\rm s} - n_{\rm sA}) = -q k_{\rm n}[{\rm A}]n_{\rm s0} \{\exp[q(E_0 - E)/k_{\rm B}T] - \exp[q(E_0 - E({\rm A/A^-}))/k_{\rm B}T]\}$$
(S1)

where  $k_n$  denotes the rate constant for electron transfer from the conduction band (CB) 320 edge of SrTiO<sub>3</sub> to the acceptor species A; E,  $E_0$  and  $E(A/A^-)$  denote the potential of 321  $SrTiO_3$ , the flat band potential of  $SrTiO_3$  and the potential of  $A/A^-$  redox, respectively; 322  $n_{\rm s}$ ,  $n_{\rm s0}$  and  $n_{\rm sA}$  denote the surface electron concentrations at the respective potentials of 323 E,  $E_0$  and  $E_{A/A^-}$ . When the  $E = E(A/A^-)$  (Figure S1b), according to the principle of 324 microscopic reversibility, the net electron current density from SrTiO<sub>3</sub> to the solution 325 equals to zero: 326

327 
$$J_n = 0$$
 at  $E = E(A/A^-)$  (S2)

^

328 In this case, the difference of electrochemical potentials between semiconductors and liquids at the liquid interface is dropped across the semiconductor. When no surface 329 states exist on the semiconductor, its band edges are fixed relative to the redox 330 potentials in an aqueous electrolyte.8 331

332 When SrTiO<sub>3</sub> is excited by UV illumination, holes will be generated in its valence band (VB). The hole concentration is determined by the local optical generation rates 333 and the hole-transfer rate. The electron and hole quasi-Fermi levels will split (Figure 334 S1c). The net hole current density can be expressed as 335

336 
$$J_{\rm p} = qk_{\rm h}[{\rm A}^-](p_{\rm s} - p_{\rm sA})$$
 (S3)

where  $k_h$  denotes the rate constant for photo-generated holes to inject to species A<sup>-</sup> from 337 the VB edge;  $p_s$  denotes the averaged surface hole concentration which injects to A<sup>-</sup> 338 from the VB edge,  $p_{sA}$  denotes the averaged surface hole concentrations at  $E(A/A^{-})$ . 339 Under open-circuit conditions, the hole quasi-Fermi level equilibrates with  $E(A/A^{-})$ 340 and the electron quasi-Fermi level shifts negatively to  $E_{\text{OCP}}$  where zero net charge flow 341 passes across SrTiO<sub>3</sub>/liquid junctions (Figure S1c). Under steady-state open circuits, 342 the mathematical relationship between the net electron current density  $(J_n)$  and the net 343 hole current density  $(J_p)$  can be described by

345 
$$J_{\rm n} + J_{\rm p} = 0$$
 (S4)

#### 346 S2 Energetics of a SrTiO<sub>3</sub>/Pt junction in water

SrTiO<sub>3</sub>/Pt may form a buried junction with fixed barrier heights, or form a 347 SrTiO<sub>3</sub>/Pt/liquid junction with variable Pt particle electrochemical potentials and 348 variable barrier heights (adaptive junction behaviour).<sup>9</sup> In the buried junction limit as 349 illustrated in Figures S2a and S2b, any potential drop at the Pt/water interface shifts the 350 351 SrTiO<sub>3</sub> band edge positions by the same amount. The band bending in SrTiO<sub>3</sub> is determined by the fixed barrier height of the SrTiO<sub>3</sub>/Pt Schottky junction. In the 352 adaptive junction case as illustrated in Figures S2c and S2d, the electrochemical 353 potential of Pt particles is determined by the kinetic branching ratios and reaches a 354 steady-state potential in a way that can affect local band bending as Pt potentials vary, 355 356 e.g., by forming surface hydrides/oxides/hydroxide/oxyhydroxides. The adaptive junction characteristic is the likely scenario as discussed in Section 5: the barrier height 357 of local SrTiO<sub>3</sub>/Pt junctions is determined by the branching ratios of charge-transfer 358 kinetics from SrTiO<sub>3</sub> CB through Pt co-catalysts to the H<sup>+</sup>/H<sub>2</sub> redox vs. to the O<sub>2</sub>/H<sub>2</sub>O 359 redox, and by the local electron quasi-Fermi level. The potential of Pt particles is 360 assumed not to affect the band edges of SrTiO<sub>3</sub>, due to the adaptive junction assumption 361 and the pinch-off effect by  $SrTiO_3$ /liquid junctions (Pt particle is ~ 3 nm in thickness 362 and  $\sim 15$  nm in radius as shown in Figure S3.). 363

To confirm that the SrTiO<sub>3</sub>/Pt in water operates under the limit of an adaptive junction, we did the following calculation to compare the thermionic emission exchange current density across a SrTiO<sub>3</sub>/Pt junction ( $J_{TE}$ ) and the current density across a Pt/water junction for H<sub>2</sub> oxidation and O<sub>2</sub> reduction ( $J_{PW}$ ).

The thermionic emission exchange current density between  $SrTiO_3$  and Pt under equilibrium,  $J_{TE}$ , can be expressed as<sup>10</sup>

370 
$$J_{\rm TE} = A^* T^2 \exp(-q \Phi_{\rm B} / k_{\rm B} T)$$
 (S5)

where  $A^*$  is a temperature-independent pre-factor indicative of the thermionic emission rate for charge transfer between SrTiO<sub>3</sub> and Pt,  $\Phi_B$  is the barrier height of the junction. The flat band potential of SrTiO<sub>3</sub> is about – 0.15 V vs. RHE, so  $\Phi_B$  is equal to (the potential of Pt vs. RHE + 0.15) V.  $A^*$  can be estimated by

375 
$$A^* = 4\pi q m^* k_{\rm B}^2 / h^3$$
 (S6)

376 where  $m^*$  is the electron effective mass, and *h* is Planck's constant. The value of  $m_e^*$ 377 can be obtained by

378 
$$N_{\rm c} = 2(2\pi m^* k_{\rm B}T / h^2)^{3/2}$$
 (S7)

379 Where  $N_c$  is the effective density of states of the conduction band. For SrTiO<sub>3</sub>,  $N_c$ 

equals to  $7.94 \times 10^{20}$  cm<sup>-3</sup>.<sup>11</sup> The value of  $m^*$  was calculated to be  $9.17 \times 10^{-30}$  kg. The value of  $A^*$  was calculated to be 1208.62 A·cm<sup>-2</sup> K<sup>-2</sup>. Based on Equation (S5), the thermionic emission exchange current  $J_{\text{TE}}$  vs. the variable potential of Pt can be obtained. This relationship was converted to  $J_{\text{TE}}$  vs. (H<sub>2</sub> + O<sub>2</sub>) gas mixture composition as plotted in Figure S4.

The current density across a Pt/water junction for H<sub>2</sub> oxidation and O<sub>2</sub> reduction,  $J_{PW}$ , is obtained by summing the exchange current density for H<sub>2</sub> oxidation ( $i_{HOR}$ ) and O<sub>2</sub> reduction ( $i_{ORR}$ ) under gas mixture of various compositions.

$$J_{\rm PW} = i_{\rm HOR} + i_{\rm ORR} \quad (S8)$$

389  $i_{HOR} = qk_{HOR}[H_{ad}]$  (S9)

390  $i_{\text{ORR}} = qk_{\text{ORR}}[O_{2(\text{ad})}]$  (S10)

In pure H<sub>2</sub>,  $i_{\text{HOR}}$  equals to the exchange current density between Pt and H<sup>+</sup>/H<sub>2</sub> couple, 1.07 mA cm<sup>-2</sup>; in pure O<sub>2</sub>,  $i_{\text{ORR}}$  equals to the exchange current density between Pt and O<sub>2</sub>/H<sub>2</sub>O couple, 0.36 mA cm<sup>-2</sup>. (derived from Figure S27)

When Pt potentials reach steady-state in a  $(H_2 + O_2)$  gas mixture, we can obtain:

395 
$$qk_{\text{HOR}}[\text{H}_{\text{ad}}]e^{\frac{\alpha F \eta_{\text{HOR}}}{RT}} = qk_{\text{ORR}}[\text{O}_{2(\text{ad})}]e^{\frac{\alpha F \eta_{\text{ORR}}}{RT}}$$
 (S11)

where  $k_{HOR}$  and  $k_{ORR}$  are the rate constants for H<sub>2</sub> oxidation and O<sub>2</sub> reduction, 396 respectively  $(k_{\text{HOR}}/k_{\text{ORR}} = 1.07/0.36 = 3)$ ;  $\alpha$  and  $\alpha$ ' are the electron transfer coefficient 397 for H<sub>2</sub> oxidation and O<sub>2</sub> reduction, respectively, taken as 0.5.  $\eta_{HOR}$  and  $\eta_{ORR}$  are the 398 overpotentials of hydrogen oxidation reaction and oxygen reduction reaction, 399 400 respectively.  $\eta_{\text{HOR}}$  and  $\eta_{\text{ORR}}$  can be obtained by referring to the steady-state potentials of Pt particles under various  $(H_2 + O_2)$  gas mixture (Figure S11). Based on Equation 401 (S11), [H<sub>ad</sub>] and [O<sub>2(ad)</sub>] under gas mixture of various compositions can be obtained. 402 Plugging [H<sub>ad</sub>] and [O<sub>2(ad)</sub>] into Equations (S8) – (S10) gives the value of  $J_{PW}$ .  $J_{PW}$ 403 vs.  $(H_2 + O_2)$  gas mixture composition was plotted in Figure S4. 404 405

As shown in Figure S4,  $J_{TE}$  was larger than  $J_{PW}$  when the H<sub>2</sub> concentration > 30% in the gas mixture. In this condition, electrons transfer to Pt from the SrTiO<sub>3</sub> CB states are likely to accumulate at the Pt sites. The Fermi level of SrTiO<sub>3</sub> aligns with the poised potential of Pt where H<sub>2</sub> oxidation via Pt and O<sub>2</sub> reduction via Pt reach detailed balance in the dark. Under illumination, the potential of SrTiO<sub>3</sub> shift to be more negative than  $E(H^+/H_2)$  regardless of the gas mixture composition, not the same as the potential in the 412 dark. In this condition, photo-generated electrons accumulate on Pt due since  $J_{\text{TE}} >>$ 413  $J_{\text{PW}}$ . The potential of Pt shifts with the electron quasi-Fermi level of SrTiO<sub>3</sub>. The 414 SrTiO<sub>3</sub>/Pt junction in water operates under the limit of an adaptive junction as shown 415 in Figure S5.

416

## 417 S3 Steady-state potential of SrTiO<sub>3</sub>/Pt contacting a O<sub>2</sub>/H<sub>2</sub>O couple in aqueous 418 solution

Semiconductor does not take on the solution redox potential but a mixed potential when another surface carrier transport occurs and the kinetics of charge transfer to solution redox is not overwhelming. When  $SrTiO_3/Pt$  is contacting a  $O_2/H_2O$  couple in aqueous solution,  $O_2$  reduction (Equation (S12)) and Pt oxidation (Equation (S13)) occur:

424 
$$4e^- + O_2 + 4H^+ \rightarrow 2H_2O$$
,  $E_{O2/H2O} = 1.23$  V vs. RHE (S12)

425 
$$Pt + 2OH^- \rightarrow PtO + H_2O + 2e^-, E_{PtO/Pt} = 0.88 V (S13)$$

426 As a result, SrTiO<sub>3</sub>/Pt will not show a steady-state potential of 1.23 V vs. RHE. The 427 obtained potential will be a mixed value of  $E_{O2/H2}$  and  $E_{PtO/Pt}$ . Referring to a previous 428 study,<sup>12</sup> we derived the mixed potential was derived as follows.

For Pt oxidation, the oxidation current density-overpotential relationship is given by

431 
$$J_{\text{PtO/Pt}} = i_{\text{PtO/Pt}}^{o} \left( e^{n_{\text{PtO/Pt}} \alpha_{\text{PtO/Pt}} F \eta_{\text{PtO/Pt}}/RT} - e^{-n_{\text{PtO/Pt}} (1 - \alpha_{\text{PtO/Pt}}) F \eta_{\text{PtO/Pt}}/RT} \right)$$
 (S14)

432 where  $J_{PtO/Pt}$  is the Pt oxidation current density,  $i^{o}_{PtO/Pt}$  is the exchange current density 433 of Pt oxidation,  $n_{PtO/Pt}$  is the apparent electron transfer number in the electrochemical 434 reaction,  $\alpha_{PtO/Pt}$  is the electron transfer coefficient, and  $\eta_{PtO/Pt}$  is the overpotential. 435 Supposing that the steady-state potential of SrTiO<sub>3</sub>/Pt is  $E_{mixed}$ ,  $\eta_{PtO/Pt} = E_{mixed} - E_{PtO/Pt}$ . 436 Assuming  $\eta_{PtO/Pt}$  is larger than 0.1 V, Equation (S14) can be approximated as follows:

437 
$$J_{\text{PtO/Pt}} = i_{\text{PtO/Pt}}^{o} e^{n_{\text{PtO/Pt}} \alpha_{\text{PtO/Pt}} R(E_{\text{mixed}} - E_{\text{PtO/Pt}})/RT}$$
(S15)

438 For  $O_2$  reduction on Pt, a similar equation can be obtained:

439 
$$J_{02/H20} = i_{02/H20}^{o} e^{n_{02/H20}\alpha_{02/H20}F(E_{02/H20}-E_{mixed})/RT}$$
 (S16)

440 where  $J_{O2/H2O}$  is the O<sub>2</sub> reduction current density,  $i^{o}_{O2/H2O}$  is the exchange current density 441 of O<sub>2</sub> reduction,  $n_{O2/H2O}$  is the apparent electron transfer number in the electrochemical 442 reaction,  $\alpha_{O2/H2O}$  is the electron transfer coefficient.

443 At a steady-state condition, no net current density is flowing through SrTiO<sub>3</sub>/Pt, 444 e.g.  $J_{PtO/Pt} = J_{O2/H2O}$ . Thus,

445 
$$i_{\text{PtO/Pt}}^{o} e^{n_{\text{PtO/Pt}} \alpha_{\text{PtO/Pt}} K_{\text{Emixed}} - E_{\text{PtO/Pt}})/RT} = i_{\text{O2/H2O}}^{o} e^{n_{\text{O2/H2O}} \alpha_{\text{O2/H2O}} F(E_{\text{O2/H2O}} - E_{\text{mixed}})/RT}$$
 (S17)

446 Assuming the exchange current density, apparent electron transfer number and the 447 electron transfer coefficient are the same for both O<sub>2</sub> reduction and Pt oxidation, the 448 value of  $E_{\text{mixed}}$  (= 1.06 V) can be obtained by Equation (S17). Note that  $E_{\text{mixed}}$  depends 449 on the chemical status of Pt, such as the coverage of PtO on Pt.

450

### 451 S4 Light intensity dependence of SrTiO<sub>3</sub>/co-catalyst/water junctions

We expect to see a light-intensity threshold when a liquid-junction interface 452 involves multiple electron-transfer pathways (see Section 2.3). One of these pathways 453 may result in H<sub>2</sub> and O<sub>2</sub> recombination. Therefore, a finite light-intensity threshold is 454 required to reach a net zero current under illumination. To verify this point, a three-455 electrode cell (illustrated in Figure S7) was adapted to simulate a two-electrode water-456 splitting cell and to measure the light-intensity-dependent photocurrents. Herein, a 457 SrTiO<sub>3</sub>/Pt and a SrTiO<sub>3</sub>/(Cr<sub>2</sub>O<sub>3</sub>/Pt) photoelectrode were used as the working electrodes 458 with its back-contact potential fixed at 0 V vs. RHE. The 0 V vs. RHE potential set the 459 working electrode as if it were to operate in a two-electrode water-splitting cell, where 460 the H<sub>2</sub>-evolving counter electrode would operate at approximately the standard 461 potential of H<sup>+</sup>/H<sub>2</sub> couples.<sup>13</sup> If pure O<sub>2</sub> gas were used to purge the solution, the working 462 electrode would inject electrons to both H<sup>+</sup>/H<sub>2</sub> and O<sub>2</sub>/H<sub>2</sub>O couples simultaneously, as 463 operating photocatalysts. Instead, if pure H<sub>2</sub> gas were used to purge the electrolyte, O<sub>2</sub> 464 was not available for electron transfer. Therefore, a light-intensity threshold should be 465 observed in a H<sub>2</sub>/O<sub>2</sub> mixture but not in pure H<sub>2</sub>. Alternatively, Cr<sub>2</sub>O<sub>3</sub> would create 466 kinetic-controlled selectivity for Pt and supress its O<sub>2</sub> reduction. 467

The current density with the SrTiO<sub>3</sub> back contact poised at 0 V vs. RHE as a function of light intensity ( $\lambda < 390$  nm) was shown in Figure S8. The light-intensity

470 threshold for SrTiO<sub>3</sub>/Pt in O<sub>2</sub> purged electrolyte was measured as 200 mW·cm<sup>-2</sup>. The

471  $H_2/O_2$  recombination current for SrTiO<sub>3</sub>/Pt in O<sub>2</sub> was 0.089 mA·cm<sup>-2</sup>, which existed 472 irrespective of the light intensity. The existence of a light-intensity threshold suggests 473 that H<sub>2</sub> generation induced by photon flux must overcome H<sub>2</sub> consumption for 474 achieving net H<sub>2</sub> accumulation during water splitting. Otherwise, the SrTiO<sub>3</sub>/Pt/water 475 junction would only recombine H<sub>2</sub> and O<sub>2</sub> via backward electron transfer from H<sub>2</sub>.

476 Compared with  $SrTiO_3/Pt$  in  $O_2$  purged electrolyte,  $SrTiO_3/(Cr_2O_3/Pt)$  showed a 477 lower recombination current density of 0.015 mA·cm<sup>-2</sup> and a lower light intensity

threshold at 160 mW·cm<sup>-2</sup>. The Cr<sub>2</sub>O<sub>3</sub> layer on Pt effectively supressed the electrontransfer pathway to O<sub>2</sub>/H<sub>2</sub>O. The SrTiO<sub>3</sub>/(Cr<sub>2</sub>O<sub>3</sub>/Pt) electrode at 0 V vs. RHE should show zero dark current and no light intensity threshold if electron-transfer selectivity to H<sup>+</sup>/H<sub>2</sub> were 100%. The slight discrepancy was likely because without a well-defined 482 H<sup>+</sup>/H<sub>2</sub> couple in O<sub>2</sub> purged electrolyte, electrons mainly transferred to surface defects 483 or spurious intermediates, such as  $CrO_4^{2-}$  species.

SrTiO<sub>3</sub>/Pt in H<sub>2</sub> purged electrolyte completely shut the electron-transfer pathway 484 to O<sub>2</sub>. There would be no H<sub>2</sub> and O<sub>2</sub> recombination, and therefore no light-intensity 485 threshold was observed, as reflected in Figure S8. In this cell, the electrons either 486 487 injected to H<sup>+</sup>/H<sub>2</sub> to make Pt-H or transported across SrTiO<sub>3</sub> photocatalysts to its back contacts at 0 V vs. RHE. Clearly, a light-intensity threshold may not exist for 488 semiconductor/two-redox liquid junctions. These observations supported the 489 fundamental principle of detailed balance--the net rates of all forward and backward 490 charge-transfer fluxes determine current-potential behaviour 491 the of 492 semiconductor/liquid junctions.

#### 493 S5 Band structures of single-crystalline SrTiO<sub>3</sub>

The CB minimum and VB maximum of single-crystalline  $SrTiO_3$  photoelectrodes have previously been measured to be – 0.4 V and 2.9 V vs. RHE, respectively,<sup>14</sup> and flat band potential was estimated by OCP measurements under illumination as shown in Figure S9. As the light intensity continued to increase, the OCP continued to decrease and reached a steady-state value at –0.15 V vs. RHE, which is assigned as its flat band potential. According to the experimental results and previous studies,<sup>14, 15</sup> the band diagram of the n-type single-crystalline  $SrTiO_3$  in vacuum was depicted in Figure S10.

502

#### 503 S6 Charge transfer at SrTiO<sub>3</sub>/water junctions in the dark

504 As shown in Figure 3a, the OCP transient from light to dark took about 1000 s for bare SrTiO<sub>3</sub>, due to slow electron-transfer kinetics over its surface. Even with a pure 505 O<sub>2</sub> flow, the OCP was 0.57 V vs. RHE, still 0.49 V more negative than 1.06 V vs. RHE. 506 Even in pure H<sub>2</sub> flow, the OCP was 0.44 V vs. RHE, still 0.44 V more positive than 0 507 V vs. RHE. As discussed in Section 2.3, the OCPs (in the potential scale) of an ideal 508 semiconductor/water junction in the dark should be close to 0 V vs. RHE under a 100% 509 H<sub>2</sub> flow, and close to 1.06 V vs. RHE under a 100% O<sub>2</sub> gas flow. However, the 510 measured OCPs were insensitive to the gas compositions, remaining almost half-way 511 between 0 and 1.06 V vs. RHE. One reason to explain this observation could be the 512 slow kinetics of any forward/backward charge-transfer pathways to either of the redox 513 potentials. Another factor could be that the surface states on bare SrTiO<sub>3</sub> dominated 514 electron transfer at the SrTiO<sub>3</sub>/water junction. A previous study reported that the surface 515 states of SrTiO<sub>3</sub> due to the formation of Ti<sup>3+</sup> or oxygen vacancy were located at ca. 0.6 516

517 V vs. RHE.<sup>16</sup> The presence of these surface states might result in the measured OCP 518 range of 0.44 to 0.57 V vs. RHE.

519

520

## 521 S7 Electron-transfer kinetics at a SrTiO<sub>3</sub>/Pt/water junction under a flow of (H<sub>2</sub> + 522 N<sub>2</sub>) or (O<sub>2</sub> + N<sub>2</sub>) mixture

The OCPs of SrTiO<sub>3</sub>/Pt in water under a  $(H_2 + N_2)$  or a  $(O_2 + N_2)$  gas mixture were 523 shown in Figure S12a and S12b, respectively. The difference of OCPs in the dark under 524 a  $(100\% H_2 + 0\% N_2)$  vs. a  $(20\% H_2 + 80\% N_2)$  gas mixture was  $80 \pm 4$  mV, which was 525 slightly larger than the formal potential shift of 41 mV caused by diluting pure H<sub>2</sub> to 526 527 20%. A similar result was also observed when pure  $O_2$  was diluted to 20% by  $N_2$ . In this case, the difference in OCP was  $154 \pm 4$  mV, also larger than the formal potential 528 shift. These results indicate that other electron transfer pathways, possible to surface 529 states, were concomitant with electron transfer to  $H^+/H_2$  and  $O_2/H_2O$  redox. The 530 electron-transfer rate to surface states were compared with those to H<sup>+</sup>/H<sub>2</sub> and to 531  $O_2/H_2O$  in the following paragraphs. 532

The OCP of SrTiO<sub>3</sub>/Pt in the dark in pure H<sub>2</sub> was estimated to be  $20 \pm 2$  mV vs. *E*(H<sup>+</sup>/H<sub>2</sub>), as shown in Figure 3b. The OCPs of Pt/SrTiO<sub>3</sub> in the dark in pure N<sub>2</sub> was measured to  $240 \pm 2$  mV vs. *E*(H<sup>+</sup>/H<sub>2</sub>) as shown in Figure S12. When Pt/SrTiO<sub>3</sub> was purged with N<sub>2</sub>, only the surface states were available to trap electrons from SrTiO<sub>3</sub>/Pt. Consequently, the dark OCP at 100% N<sub>2</sub> is assumed to be the potential of surface states. Based on the rate law of steady-state equilibrium in the dark, we can deduce,

539 
$$J_{\text{H}^+/\text{H}_2} + J_{\text{ss}} = 0$$
 (S18)

where  $J_{\text{H+/H2}}$  and are  $J_{\text{ss}}$  the current density from SrTiO<sub>3</sub> to H<sup>+</sup>/H<sub>2</sub> and surface states, respectively, at OCP of SrTiO<sub>3</sub>/Pt in the dark in pure H<sub>2</sub>. Based on the principle of detailed balance,

543 
$$J_{\text{H}^+/\text{H}_2} = j_1 \exp[(0-20)\text{mV}/(k_{\text{B}}T/q)] - j_1 \text{ (S19)}$$

544 where  $J_1$  is the exchange current density between SrTiO<sub>3</sub>/Pt and H<sup>+</sup>/H<sub>2</sub>;

545 
$$J_{ss} = j_2 \exp[(240 - 20) \text{mV} / (k_{\text{B}}T/q)] - j_2$$
 (S20)

where  $j_2$  is the exchange current density between SrTiO<sub>3</sub>/Pt and surface states. According to Equation (S18),  $j_2$  is four orders of magnitude lower than  $j_1$ . Therefore, the electron-transfer rate between SrTiO<sub>3</sub>/Pt and surface states is minor compared to that between SrTiO<sub>3</sub>/Pt and H<sup>+</sup>/H<sub>2</sub>. Such an estimation is equally applicable to the OCP behaviour under a (O<sub>2</sub> + N<sub>2</sub>) mixture.

# 552 S8 Quantitative fitting for the kinetic rate law of the forward electron transfer 553 from SrTiO<sub>3</sub>/Pt to O<sub>2</sub>/H<sub>2</sub>O

554 S8.1 Extracting  $J_{2,forward}$  from J

Figure S14 shows the Log *J* vs. *E* curves for SrTiO<sub>3</sub>/Pt under various compositions of  $(H_2 + O_2)$  gas mixtures. In the measurement, *E* was scanned from the OCP in the dark to slightly more positive than  $E(H^+/H_2)$  (i.e. 0 V vs. RHE).

According to Equation (18), the net current density across the SrTiO<sub>3</sub>/Pt/water junction at steady-state condition should be zero, i.e. detailed balance. Under OCP conditions in the dark,  $J_{1,\text{forward}}$  and  $J_{2,\text{backward}}$  are negligible. Therefore, Equation (18) can be expressed as

562  $J_{1,\text{backward}} + J_{2,\text{forward}} = 0$  (S21)

563 
$$qk_1[Pt^*]n_{s0}\exp[q(E_0-E_1)/n_1k_BT] - qk_2[O_{2(ad)}]n_{s0}\exp[q(E_0-E)/n_2k_BT] = 0$$
 (S22)

Taking E as the OCPs of  $SrTiO_3/Pt$  electrodes in the dark at steady-state condition 564 (summarized in Table S1) and plugging E into Equation (S22) gives us pre-factor ratios 565 566 of  $k_1[Pt^*]/k_2[O_{2(ad)}]$  under various gas compositions (summarized in Table S2). Note that the  $(100\% O_2 + 0\% H_2)$  and  $(100\% H_2 + 0\% O_2)$  were excluded from the table since 567  $H^+/H_2$  and  $O_2/H_2O$  do not have a well-defined potential in the electrolyte in these cases. 568 With the values of  $k_1[Pt^*]/k_2[O_{2(ad)}]$ , the ratios between  $J_{1,backward}$  and  $J_{2,forward}$  at each 569 applied potential can be confirmed. For example, in a (60% O<sub>2</sub> + 40% H<sub>2</sub>) gas mixture, 570  $k_1[\text{Pt}^*]/k_2[\text{O}_{2(ad)}] = 3.81 \times 10^{-9}$ , and  $|J_{1, \text{ backward}}| \ll |J_{2, \text{ forward}}|$  when E < 0.2 V vs. RHE. 571 Based on the ratios between  $J_{1,\text{backward}}$  and  $J_{2,\text{forward}}$  at each applied potential under 572 various gas compositions,  $\log J_{2,\text{forward}}$  vs.  $(E_0 - E)$  curve (Figure S15) was extrapolated 573 from Figure S14. 574

575

576 Table S1. OCPs of SrTiO<sub>3</sub>/Pt electrodes in the dark at steady-state condition under

577 various gas compositions

| Gas mixture composition               | OCP / V vs. RHE |
|---------------------------------------|-----------------|
| $80\% O_2 + 20\% H_2$                 | 0.560           |
| $60\% \text{ O}_2 + 40\% \text{ H}_2$ | 0.498           |
| $40\% O_2 + 60\% H_2$                 | 0.423           |
| $20\% O_2 + 80\% H_2$                 | 0.328           |

578

579 Table S2. Ratios between pre-factors,  $k_1$ [Pt<sup>\*</sup>]/ $k_2$ [O<sub>2(ad)</sub>]

| Gas mixture composition | $k_1[\text{Pt}^*]/k_2[\text{O}_{2(\text{ad})}]$ |
|-------------------------|-------------------------------------------------|
| 80% $O_2 + 20\% H_2$    | 3.41 ×10 <sup>-10</sup>                         |
| $60\% O_2 + 40\% H_2$   | 3.81 ×10 <sup>-9</sup>                          |
| $40\% O_2 + 60\% H_2$   | 7.05 ×10 <sup>-8</sup>                          |
| $20\% O_2 + 80\% H_2$   | 2.85 ×10 <sup>-6</sup>                          |

581 S8.2 Log-linear fitting of  $J_{2,forward}$ 

As shown in Figure S16, the log  $J_{2,\text{forward}}$  vs.  $(E_0 - E)$  curves were linear in a certain region. The slopes of these curves at the linear region at various  $(H_2 + O_2)$  gas mixtures were fitted. These slopes were fitted to be 157 - 167 mV dec<sup>-1</sup>, which is consistent with Tafel slope of ORR on Pt.<sup>17</sup> These fitting results validated the exponential term, exp[ $q(E_0 - E)/n_2k_BT$ ], in Equation (10). Furthermore, they validated our adaptive junction assumption, where the charge transfer between Pt and water limits the charge transfer at a SrTiO<sub>3</sub>/Pt/water junction.

589 The logarithm of the pre-factor,  $qk_2[O_{2(ad)}]n_{s0}$ , of Equation (10) is equal to the intercept of the linear fitting line with the log  $J_{2,\text{forward}}$  axis. The values of  $qk_2[O_{2(\text{ad})}]n_{s0}$ 590 were obtained as shown in Table S3. The values will be compared with those calculated 591 592 based on the detailed balance of electron transfer in the dark in a  $(O_2 + N_2)$  gas mixture. Here, we assume that the pre-factor is only dependent on the O<sub>2</sub> concentration in a gas 593 mixture. The OCPs of SrTiO<sub>3</sub>/Pt electrodes in the dark at steady-state condition in a 594  $(O_2 + N_2)$  gas mixture were summarized in Table S4. According to detailed balance, 595 the steady-state net current density across the SrTiO<sub>3</sub>/Pt/water junction should be zero. 596 In a  $(O_2 + N_2)$  gas mixture without  $H_2$ ,  $H^+/H_2$  does not have a well-defined potential in 597 the electrolyte:  $J_{1,\text{forward}} \approx 0$  because Pt sites are mostly covered by O<sub>2</sub>; and  $J_{1,\text{backward}} \approx$ 598 0 because  $[H_{ad}]$  is negligible. Therefore, electron current density to  $H^+/H_2$  (J<sub>1</sub>) is 599 negligible, i.e.,  $J_1 \approx 0$ .  $J_2$  is the main portion of interfacial electron current density and 600 can be expressed as: 601

602 
$$J_2 = -qk_2[O_{2(ad)}]n_{s0} \exp[q(E_0 - E)/n_2k_BT] + J_{2,backward}$$
 (23)

603 At steady-state condition,  $J_2 = 0$ .  $J_{2,backward}$  can be expressed as:

604 
$$J_{2,\text{backward}} = qk_2[O_{2(\text{ad})}]n_{s0} \exp[q(E_0 - E)/n_2k_BT]$$
 (24)

605  $J_{2,\text{backward}}$  is a gas composition independent constant according to Equations (16). 606 Taking *E* as the OCPs of SrTiO<sub>3</sub>/Pt electrodes in the dark at steady-state condition 607 (summarized in Table S4) and plugging *E* into Equation (S24) gave the pre-factors, i.e. 608  $qk_2[O_{2(\text{ad})}]n_{\text{s0}}$ , at various O<sub>2</sub> compositions. We simply used a constant  $\alpha$  to represent the relative ratios for all of the pre-factors  $qk_2[O_{2(ad)}]n_{s0}$ , as summarized in Table S5. The values of  $qk_2[O_{2(ad)}]n_{s0}$  from the two independent methods, i.e. fitting and OCP measurement, were then compared in Figure S17.  $Log(qk_2[O_{2(ad)}]n_{s0})$  showed similar trend in both cases, thus validating the pre-factor term,  $qk_2[O_{2(ad)}]n_{s0}$ , of Equation (10).

| 614 | Table S3. | Relative ratios of | f the | $qk_2[0$ | $\mathcal{D}_{2(ad)}$ | $n_{\rm s0}$ pre- | factors | extracted | l as t | he ii | ntercepts |
|-----|-----------|--------------------|-------|----------|-----------------------|-------------------|---------|-----------|--------|-------|-----------|
|-----|-----------|--------------------|-------|----------|-----------------------|-------------------|---------|-----------|--------|-------|-----------|

| Gas mixture composition | $\text{Log}(qk_2[O_{2(ad)}]n_{s0})$ |
|-------------------------|-------------------------------------|
| $100\% O_2 + 0\% N_2$   | -1.122                              |
| $80\% O_2 + 20\% N_2$   | -1.149                              |
| $60\% O_2 + 40\% N_2$   | -1.185                              |
| $40\% O_2 + 60\% N_2$   | -1.230                              |
| $20\% O_2 + 80\% N_2$   | -1.450                              |

615

616 Table S4. OCPs in the dark at steady-state condition in a  $(O_2 + N_2)$  gas mixture

| Gas mixture composition                 | OCP in the dark / V vs. RHE |
|-----------------------------------------|-----------------------------|
| 100% O <sub>2</sub> + 0% N <sub>2</sub> | 0.726                       |
| $80\% O_2 + 20\% N_2$                   | 0.719                       |
| $60\% O_2 + 40\% N_2$                   | 0.716                       |
| $40\% O_2 + 60\% N_2$                   | 0.707                       |
| $20\% O_2 + 80\% N_2$                   | 0.695                       |

617

Table S5. Relative ratios of  $qk_2[O_{2(ad)}]n_{s0}$  obtained based on detailed balance

| Gas mixture composition                 | $qk_2[O_{2(ad)}]n_{s0}$ | $\mathrm{Log}(qk_2[\mathrm{O}_{2(\mathrm{ad})}]n_{\mathrm{s0}})$ |
|-----------------------------------------|-------------------------|------------------------------------------------------------------|
| 100% O <sub>2</sub> + 0% N <sub>2</sub> | 7.45α*                  | $1.87 + \log \alpha$                                             |
| 80% $O_2 + 20\% N_2$                    | 6.19a                   | $1.79 + \log \alpha$                                             |
| $60\% O_2 + 40\% N_2$                   | 5.38a                   | $1.73 + \log \alpha$                                             |
| $40\% O_2 + 60\% N_2$                   | 3.71a                   | $1.57 + \log \alpha$                                             |
| $20\% O_2 + 80\% N_2$                   | 2.37a                   | $1.37 + \log \alpha$                                             |

 $^{*}$ α is an arbitrary constant to present the pre-factor ratios.

#### 621 S9 Hole quasi-Fermi levels and estimation of photovoltages.

Different from the electron quasi-Fermi level position, the hole quasi-Fermi level position of n-type  $SrTiO_3$  under illumination cannot be directly measured by OCPs. As discussed in Section 2.2, holes transfer across a  $SrTiO_3/Pt/junction$  only through bare  $SrTiO_3$  sites. This deduction suggests that the hole quasi-Fermi level will be pinned at

<sup>620</sup> 

the formal potential of  $OH_{ad}$  as a rate-determining intermediate, which is at an overpotential added to the  $O_2/H_2O$  redox potential. This deduction is consistent with a previous study on photoelectrochemical water oxidation using an in-situ potential sensing technique for co-catalysts under operation, where their potentials were shown to be (1.23 V vs. RHE + an overpotential).<sup>18</sup>

631 The photovoltage generated in a semiconductor/liquid junction is defined as the difference between the electron quasi-Fermi level at the electron accumulation site (Pt 632 co-catalysts) and the hole quasi-Fermi level at the hole accumulation sites (bare 633  $SrTiO_3$ ). The photovoltage of  $SrTiO_3$  should be calculated as [(1.23 V vs. RHE + 634 overpotential) - OCP under illumination vs. RHE)] instead of (OCP in the dark - OCP 635 636 under illumination). We found that the more negative the OCP under illumination is, the higher the photovoltage is. Charge-separation efficiency is a fundamental parameter 637 that describes the portion of charge separated per total charge generated inside 638 photocatalysts. In other words, the more negative the potential of electron quasi-Fermi 639 levels, the higher the charge-separation efficiency. 640

641

#### 642 S10 Effects of back contacts on the OCP measurement of Photocatalyst Particles

Ti and Ta layers are successfully used as ohmic back contacts to SrTiO<sub>3</sub>:Al 643 particulate-based electrodes and Ta<sub>3</sub>N<sub>5</sub> thin-film-based electrodes, respectively, for 644 direct measurement of their electron quasi-Fermi levels, and electrons are considered 645 to hop through the particle films and get collected by the back contact. The 646 electrochemical potential of a Ti layer was not sensitive to the composition of the H<sub>2</sub>/O<sub>2</sub> 647 mixture (shown in Figure S18). The Ta layer was fully covered by a Ta<sub>3</sub>N<sub>5</sub> film and 648 isolated from the electrolyte as shown in Figure S19. Thus, its potential did not depend 649 on the composition of the  $H_2/O_2$  mixture either. 650

651

# S11 Charge-separation and charge-transfer processes of SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> vs. SrTiO<sub>3</sub>:Al/Pt

The dark OCPs of Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub>-particle photoelectrodes in pure H<sub>2</sub> and O<sub>2</sub> were measured to be 0.26 V and 0.67 V vs. RHE, respectively, with a difference of 0.41 V (Figure S26a). RhCrO<sub>x</sub> does not supress O<sub>2</sub> reduction as much as Pt/Cr<sub>2</sub>O<sub>3</sub> does. This difference was higher than that of Ti/SrTiO<sub>3</sub>:Al due to its pinning to surface states, but noticeably lower than that of Ti/SrTiO<sub>3</sub>:Al/Pt-particle photoelectrodes. The OCPs also showed gas-composition dependence in a (H<sub>2</sub> + N<sub>2</sub>) gas mixture (Figure S26b) or a (O<sub>2</sub> + N<sub>2</sub>) gas mixture (Figure S26c). These results suggested that the electron-transfer

pathways to the  $H^+/H_2$  and  $O_2/H_2O$  redox couples were mainly through RhCrO<sub>x</sub> co-661 catalysts, and that the electron-transfer pathways through surface traps on SrTiO<sub>3</sub>:Al 662 was not negligible. The surface states on  $SrTiO_3$ : Al are either native or due to  $RhCrO_x$ 663 loading. Nevertheless, the water-splitting activity of SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> was about two 664 orders of magnitude higher than that of SrTiO<sub>3</sub>:Al/Pt in pure H<sub>2</sub>, by comparing data 665 666 shown in Figures S24 and S25. Hence, the better water-splitting performance of  $SrTiO_3$ :Al/RhCrO<sub>x</sub> was not due to better kinetics, nor better redox selectivity, but other 667 factors. 668

To understand the functionalities of  $RhCrO_x$  co-catalysts, we further compared 669 OCPs of Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> and Ti/SrTiO<sub>3</sub>:Al/Pt under illumination, which 670 provided information about the respective charge separation efficiency. As shown in 671 Figure 6c, the OCPs of Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> under illumination ranged from -0.1 to 672 - 0.2 V vs. RHE, which was about 0.2 V more negative than the OCPs of 673 Ti/SrTiO<sub>3</sub>:Al/Pt under illumination for all gas compositions. The electrocatalytic H<sub>2</sub> 674 evolution activities of Pt and RhCrO<sub>x</sub> catalysts on FTO substrates were similar, as 675 shown in Figures S27a-S27c, which suggested that their H<sub>2</sub>-evolution kinetics were 676 comparable. The more negative OCPs for Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> under illumination can 677 be attributed to a better charge separation efficiency in SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> particles. 678 When the  $O_2$  concentration in the gas mixture was higher than 60%, the OCPs in the 679 dark of Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> were more negative than those of Ti/SrTiO<sub>3</sub>:Al/Pt (filled 680 681 dots in Figure 6b vs. 6c). At  $O_2 > 60\%$  and  $H_2 < 40\%$ , the band bending asymmetry across the reductive (electron accumulation) and oxidative (hole accumulation) sites on 682  $SrTiO_3:Al/RhCrO_x$  particles was more favourable for charge separation than for 683 SrTiO<sub>3</sub>:Al/Pt particles. The OCP measurements suggested that the charge-separation 684 efficiency at individual SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> particles was higher than SrTiO<sub>3</sub>:Al/Pt 685 particles, as indicated by the consistently more negative OCPs under illumination. 686 When the  $O_2$  concentration in the gas mixture was lower than 60%, the dark OCPs of 687 Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> became more positive than those of Ti/SrTiO<sub>3</sub>:Al/Pt (filled dots 688 in Figure 6b vs. 6c). In this circumstance, the band bending in SrTiO<sub>3</sub>:Al/Pt became 689 690 sufficiently asymmetric and became favourable for charge separation. However, the OCPs of Ti/SrTiO<sub>3</sub>:Al/Pt under illumination were still less negative than 691 Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub>, revealing less efficient charge separation on SrTiO<sub>3</sub>:Al/Pt 692 particles. Our observations indicated that the charge-separation efficiency for 693 SrTiO<sub>3</sub>:Al/Pt photocatalysts was deteriorated by the severe charge recombination 694 occurring at the SrTiO<sub>3</sub>:Al/Pt/water interface. This negative effect of using metallic Pt 695

696 as a co-catalyst was also reported for GaN/Pt systems.<sup>19</sup> Therefore, the improved charge 697 separation at  $SrTiO_3$ :Al/RhCrO<sub>x</sub> particles may be due to 1) less recombination at the 698  $SrTiO_3$ :Al/RhCrO<sub>x</sub> interfaces, and/or 2) significant band bending asymmetry at the 699 electron and hole accumulation sites under the full span of gas compositions, as shown 700 in Figure S28.

#### 702 Supplementary Figures



Figure S1. Charge-transfer process at SrTiO<sub>3</sub>/one-redox liquid junctions and steady-704 state current-potential (J-E) behaviour of SrTiO<sub>3</sub> photoelectrodes in the dark and under 705 illumination.  $E_{\rm f}$ ,  $E_{\rm f,n}$  and  $E_{\rm f,p}$  denote the potentials of the Fermi level, electron quasi-706 Fermi level and hole quasi-Fermi level of  $SrTiO_3$ , respectively;  $E(A/A^-)$  denotes the 707 redox potential of A/A<sup>-</sup>;  $J_n$  denotes the net electron current density from SrTiO<sub>3</sub> to 708 solution;  $J_p$  denotes the net hole current density from SrTiO<sub>3</sub> to solution. The solid 709 arrows and dashed arrows represent the major and minor pathways for charge transfer, 710 respectively. 711









Figure S3. AFM images of bare SrTiO<sub>3</sub> and SrTiO<sub>3</sub>/Pt. For the SrTiO<sub>3</sub> surface, a 110 × 110 nm<sup>2</sup> area was selected to represent its surface morphology, and the randomly chosen cross section (dashed white line) shows that the average surface step height is about 0.3 nm; whereas on the SrTiO<sub>3</sub>/Pt surface, a representative area of  $332 \times 332$  nm<sup>2</sup> was selected, and the average step height was about 1.6 nm, which indicated the deposition of Pt nanoparticles on the SrTiO<sub>3</sub> surface. The radius of Pt particles is about 15 nm and the thickness is about 3 nm.



Figure S4. Log–linear plots of  $J_{TE}$  and  $J_{PW}$  vs. compositions of (H<sub>2</sub>+O<sub>2</sub>) gas mixture. 730



731

Figure S5. A proposed model for the charge-transfer process at a SrTiO<sub>3</sub>/Pt/water junction under illumination.  $J_1$  and  $J_2$  denote the net electron current densities to H<sup>+</sup>/H<sub>2</sub> and O<sub>2</sub>/H<sub>2</sub>O, respectively.  $J_3$  denotes the net hole current density to O<sub>2</sub>/H<sub>2</sub>O.  $E_{f,n}$  and  $E_{f,p}$  denote the potentials of electron quasi-Fermi level and hole quasi-Fermi level of SrTiO<sub>3</sub>, respectively. For each redox, the forward and reverse pathways were not shown individually but, for simplicity, were shown as an arithmetic sum of the respective forward and reverse fluxes.

739

740



Figure S6. *J–E* curves for a single-crystalline  $SrTiO_3/Pt$  photoelectrode under illumination with either H<sub>2</sub> or O<sub>2</sub> flow. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.

746



747

Figure S7. Schematics of a three-electrode setup purged with (a)  $O_2$  or (b)  $H_2$  for measuring the light-intensity dependent photocurrents. When the setup was purged with

VB

(b) Three-electrode cell purged with pure  $H_2$ 

h<sup>+</sup>

h+

O<sub>2</sub>, a standard H<sup>+</sup>/H<sub>2</sub> redox couple did not exist in the electrolyte. For this reason,  $E(H^+/H_2)$  was not shown. When the setup was purged with H<sub>2</sub>, a standard O<sub>2</sub>/H<sub>2</sub>O redox couple did not exist in the electrolyte. For this reason,  $E(O_2/H_2O)$  was not shown. Arrows show H<sub>2</sub> or O<sub>2</sub> evolution that still occurs but without a well-defined potential. The potential of the electrode was poised at 0 V vs. RHE. In this figure, electron and hole quasi Fermi levels are drawn but for Pt and SrTiO<sub>3</sub> sites, respectively.



757

Figure S8. Current density measured at  $SrTiO_3$ /co-catalyst/water junctions as a function of light intensity, with the  $SrTiO_3$  back contacts poised at 0 V vs. RHE. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.



Figure S9. Open-circuit potential of single-crystalline  $SrTiO_3$  as a function of illumination intensity. The electrolyte is 0.5 M  $Na_2SO_4(aq)$  solution with pH adjusted to 12.5.











Figure S11. OCPs of an FTO/Pt electrode in an aqueous electrolyte purged with (a) a  $(H_2 + O_2)$  gas mixture, (b) a  $(H_2 + N_2)$  gas mixture or (c) a  $(O_2 + N_2)$  gas mixture. The

electrolyte is 0.5 M  $Na_2SO_4(aq)$  solution with pH adjusted to 12.5.



Figure S12. OCPs of a SrTiO<sub>3</sub>/Pt photoelectrode in an aqueous electrolyte purged with (a) a  $(H_2 + N_2)$  gas mixture or (b) a  $(O_2 + N_2)$  gas mixture. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.



780

Figure S13. OCPs of a  $SrTiO_3/(Cr_2O_3/Pt)$  photoelectrode in an aqueous electrolyte purged with a  $(H_2 + N_2)$  gas mixture. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.



Figure S14. Log-linear plots of *J* vs. *E* for SrTiO<sub>3</sub>/Pt electrodes with a  $(H_2 + O_2)$  gas mixture.



Figure S15. Log-linear plots of  $J_{2,\text{forward}}$  vs.  $(E_0 - E)$  for SrTiO<sub>3</sub>/Pt electrodes with a (H<sub>2</sub> + O<sub>2</sub>) gas mixture.



Figure S16. Linear fitting of log-linear plot of  $J_{2,\text{forward}}$  vs.  $(E_0 - E)$  for SrTiO<sub>3</sub>/Pt electrodes with a (H<sub>2</sub> + O<sub>2</sub>) gas mixture.



797

Figure S17. Values of  $qk_2[O_{2(ad)}]n_{s0}$  from fitting and OCP measurement. For the convenience of comparison, the constant  $\alpha$  was given a value which  $log(\alpha) = -2.6$ , where  $\alpha$  is assigned as an arbitrary constant to present the relative ratios in Table S5. Error bars in the "OCP measurement" arose from the variation of OCPs measured in a 1-minute duration.



Figure S18. OCPs of a Ti layer by sputtering in an aqueous electrolyte purged with a  $(H_2 + O_2)$  gas mixture. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.







811 substrate.







816

Figure S20. OCPs of a Ti/SrTiO<sub>3</sub>:Al photoelectrode in an aqueous electrolyte purged with (a) a  $(H_2 + O_2)$  gas mixture, (b) a  $(H_2 + N_2)$  gas mixture, or (c) a  $(O_2 + N_2)$  gas mixture. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.



Figure S21. A time course of gas evolution during overall water splitting over
SrTiO<sub>3</sub>:Al particles. The reaction was conducted in de-ionized water.









833

Figure S22. OCPs of a Ti/SrTiO<sub>3</sub>:Al/Pt photoelectrode in an aqueous electrolyte purged with (a) a  $(H_2 + O_2)$  gas mixture, (b) a  $(H_2 + N_2)$  gas mixture, or (c) a  $(O_2 + N_2)$  gas mixture. Inset in (b): OCPs in an aqueous electrolyte purged with pure N<sub>2</sub> for 1200 s. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.

(b) High quantum efficiency (a) Low quantum efficiency in pure H<sub>2</sub> in pure O<sub>2</sub> Evacuum Evacuum Native sites Native sites CB Pt sites Pt sites H<sup>+</sup>/H<sub>2</sub> H<sup>+</sup>/H<sub>2</sub>  $O_2/H_2O$ Recombination E<sub>f,p</sub>  $O_2/H_2O$ ,/H<sub>2</sub>O Photocatalyst Photocatalyst

Figure S23. Energy diagrams of photocatalyst/co-catalyst/water junction in the dark with the electrolyte purged by (a)  $O_2$  and (b)  $H_2$ . These energy diagrams are applicable to SrTiO<sub>3</sub>/Pt/water, SrTiO<sub>3</sub>:Al/Pt/water and Ta<sub>3</sub>N<sub>5</sub>/Pt/water liquid junction interfaces.



838

Figure S24. Time courses of gas evolution during overall water splitting over 839 SrTiO<sub>3</sub>:Al/Pt particles in H<sub>2</sub> and O<sub>2</sub> atmosphere. In H<sub>2</sub> atmosphere, (60% H<sub>2</sub> + 40% Ar) 840 841 was used instead of 100% H<sub>2</sub> for safety concern. The produced H<sub>2</sub> cannot be accurately measured due to the high  $H_2$  background concentration in (60%  $H_2$  + 40% Ar) 842 atmosphere. The amount of O2 was measured. The amount of H2 was calculated based 843 on the water splitting stoichiometry. The water splitting occurred, but stopped after two 844 845 hours due to the local accumulation of O<sub>2</sub> on particles. In O<sub>2</sub> atmosphere, 100% O<sub>2</sub> was used. The produced O<sub>2</sub> cannot be accurately measured due to the high O<sub>2</sub> background 846 concentration in pure O<sub>2</sub> atmosphere. The amount of H<sub>2</sub> was measured to be negligible. 847 The amount of O<sub>2</sub> was calculated to be negligible based on the water splitting 848 849 stoichiometry. The reaction was conducted in de-ionized water. 850



852 Figure S25. A time course of gas evolution during overall water splitting over 853  $SrTiO_3:Al/RhCrO_x$  particles. The reaction was conducted in de-ionized water. 







Figure S26. OCPs of a Ti/SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub> photoelectrode in an aqueous electrolyte purged with (a) a  $(H_2 + O_2)$  gas mixture, (b) a  $(H_2 + N_2)$  gas mixture, or (c) a  $(O_2 + N_2)$ gas mixture. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.



Figure S27. *J-E* curves for FTO/Pt and FTO/RhCrO<sub>x</sub> for (a) H<sub>2</sub> evolution in the electrolyte purged with H<sub>2</sub>, and (d) O<sub>2</sub> reduction in the electrolyte purged with O<sub>2</sub>. Tafel plots for (b) and (c) the H<sub>2</sub> evolution performance of Pt and RhCrO<sub>x</sub>, and (e) and (f) the O<sub>2</sub> reduction performance of Pt and RhCrO<sub>x</sub>. Black line: raw results; red line: Tafel fitting. The Tafel slope was calculated based on the iR-corrected polarization curves. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5.



870

871 Figure S28. Schematic energy diagrams of (a) SrTiO<sub>3</sub>:Al/Pt/water junction and (b) 872 SrTiO<sub>3</sub>:Al/RhCrO<sub>x</sub>/water junction under illumination. The shaded region at at bare

873 SrTiO<sub>3</sub> surfaces indicate the hole charge trapping sites that drive water oxidation.









Figure S29. OCPs of (a) Ta/Ta<sub>3</sub>N<sub>5</sub>, and (b) Ta/Ta<sub>3</sub>N<sub>5</sub>/Pt photoelectrodes in an aqueous electrolyte, and (c) Ta/Ta<sub>3</sub>N<sub>5</sub>/Pt in 20 vol% MeOH aqueous solution purged with a (H<sub>2</sub> + O<sub>2</sub>) gas mixture. The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub>(aq) solution with pH adjusted to 12.5 for (a) and (b). The electrolyte is 0.5 M Na<sub>2</sub>SO<sub>4</sub> 20 vol% MeOH aqueous solution with pH adjusted to 12.5 for (c).



Figure S30. Time courses of gas evolution during overall water splitting and  $H_2$ evolution during half reaction in 20 vol% MeOH aqueous solution over Ta<sub>3</sub>N<sub>5</sub>/Pt. In  $H_2$ atmosphere, (60%  $H_2$  + 40% Ar) was used instead of 100%  $H_2$  for safety reasons. The amount of O<sub>2</sub> was measured, while the amount of  $H_2$  was calculated by the water splitting stoichiometry. In O<sub>2</sub> atmosphere, 100% O<sub>2</sub> was used. The amount of  $H_2$  was

measured, while the amount of  $O_2$  was calculated by the water splitting stoichiometry. The data points of  $H_2$  evolution and  $O_2$  evolution during overall water splitting covered each other.  $N_2$  evolution due to self-oxidation of  $Ta_3N_5$  was not shown. Overall water splitting was conducted in de-ionized water.  $H_2$  evolution during half reaction was conducted in 20 vol% MeOH aqueous solution.



896

895

Figure S31. XRD patterns of (a)  $SrTiO_3$ :Al particles, and (b)  $Ta_3N_5/Ta$  and  $Ta_3N_5$ particles.

899

900



902 Figure S32. (a) Plan-view and (b) cross-sectional SEM images of SrTiO<sub>3</sub>:Al particles

903 on a Ti substrate.



Figure S33. Schematic of electrochemical cell.  $H_2$  (g),  $O_2$  (g) and  $N_2$  (g) were used for mixed gas. WE: working electrode; RE: reference electrode; CE: counter electrode. The reactor operated in ambient pressure.

,,,,

#### 914 Reference

- M. S. Wrighton, A. B. Ellis, P. T. Wolczanski, D. L. Morse, H. B. Abrahamson and D. S. Ginley, J.
   *Am. Chem. Soc.*, 1976, 98, 2774-2779.
- 917 2. H. Uwe, R. Yoshizaki, T. Sakudo, A. Izumi and T. Uzumaki, *Japanese Journal of Applied Physics*,
  918 1985, 24, 335.
- 919 3. Y. Ham, T. Hisatomi, Y. Goto, Y. Moriya, Y. Sakata, A. Yamakata, J. Kubota and K. Domen, J.
   920 Mater. Chem. A, 2016, 4, 3027-3033.
- 4. Z. Zhao, R. V. Goncalves, S. K. Barman, E. J. Willard, E. Byle, R. Perry, Z. Wu, M. N. Huda, A. J.
  Moulé and F. E. Osterloh, *Energy Environ. Sci.*, 2019, 12, 1385-1395.
- 923 5. T. Minegishi, N. Nishimura, J. Kubota and K. Domen, Chem. Sci., 2013, 4, 1120-1124.
- 924 6. M. Zhong, T. Hisatomi, Y. Sasaki, S. Suzuki, K. Teshima, M. Nakabayashi, N. Shibata, H.
- Nishiyama, M. Katayama, T. Yamada and K. Domen, Angew. Chem. Int. Ed., 2017, 56, 4739-4743.
- 926 7. E. Nurlaela, A. Ziani and K. Takanabe, *Materials for Renewable and Sustainable Energy*, 2016, 5,
  927 18.
- M. F. Lichterman, S. Hu, M. H. Richter, E. J. Crumlin, S. Axnanda, M. Favaro, W. Drisdell, Z. Hussain, T. Mayer, B. S. Brunschwig, N. S. Lewis, Z. Liu and H.-J. Lewerenz, *Energy Environ. Sci.*
- 930 , 2015, 8, 2409-2416.
- 931 9. R. C. Rossi and N. S. Lewis, J. Phys. Chem. B, 2001, 105, 12303-12318.
- 932 10. S. M. S. K. K. Ng, Wiley, 2007.
- 933 11. Q. Wang, T. Hisatomi, Y. Suzuki, Z. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T.
  934 Takata, K. Seki, A. Kudo, T. Yamada and K. Domen, *J. Am. Chem. Soc.*, 2017, 139, 1675-1683.
- P35 12. C. Song and J. Zhang, in *PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications*, ed. J. Zhang, Springer London, London, 2008, DOI: 10.1007/978-1-84800-936-3\_2, pp. 89-134.
- 938 13. A. Kumar, P. G. Santangelo and N. S. Lewis, J. Phys. Chem., 1992, 96, 834-842.
- 939 14. Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M.
- Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada and K. Domen, *Nat. Mater.*, 2016,
  15, 611-615.
- 942 15. Q. Wang, T. Hisatomi, S. S. K. Ma, Y. Li and K. Domen, Chem. Mater. , 2014, 26, 4144-4150.
- 943 16. T. Wolfram and S. Ellialtioglu, *Electronic and optical properties of d-band perovskites*, Cambridge
  944 University Press, 2006.
- 945 17. T. Shinagawa, A. T. Garcia-Esparza and K. Takanabe, Scientific Reports, 2015, 5, 13801.
- 946 18. J. Qiu, H. Hajibabaei, M. R. Nellist, F. A. L. Laskowski, T. W. Hamann and S. W. Boettcher, ACS
  947 Central Science, 2017, 3, 1015-1025.
- 948 19. M. Yoshida, A. Yamakata, K. Takanabe, J. Kubota, M. Osawa and K. Domen, *J. Am. Chem. Soc.*,
  949 2009, 131, 13218-13219.
- 950