Supporting information for

Recent Progress in Flexible-Wearable Solar Cells for Self-Powered Electronic Devices

Seyyed Alireza Hashemi ^{a,b}, Seeram Ramakrishna ^{a,*}, Armin Gerhard Aberle ^{b,c}

^a Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore

^b Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574

^c Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583

Device Composition	V _{oc}	J_{sc}	FF (%)	PCE	3D structure			
	(*)	(IIIA/CIII)	(70)	(70)				
1.Carbon 2.CH ₃ NH ₃ PbI ₃ 3.m-TiO ₂ 4.c-TiO ₂ 5.FTO	0.74	14.4	0.31	3.3	Carbon CH3NH3Pbl3 CH3NH3Pbl3 C mesoscopic TiO2 compact TiO2 FTO	1		
1.Au 2.Spiro-MeOTAD 3.CH ₃ NH ₃ PbI ₃ 4.Li:SnO ₂ 5.FTO	1.106	23.27	70.71	18.20	Au layer Spiro-MeOTAD CH ₃ NH ₃ Pbl ₃ Li:SiO ₂ FTO layer	2		
1.Ag 2.PCBM 3.CH ₃ NH ₃ PbI ₃ 4.P3HT 5.Zeocoat 6.PET	1.04	19.87	76	15.7	Ag PCBM Perovskite P3HT ZEOCOAT™ PET	3		
1.Ag 2.PCBM 3.CH ₃ NH ₃ PbI ₃ 4.Gd-TiOx 5.FTO	1.12	23.61	78	20.53	Ag top electode PCBM CH ₃ NH ₃ Pbl ₃ Gd-TiO _x FTO layer	4		
1.Al 2.bcp 3.PCBM 4.30MAPbI ₃ -15s 5.Poly-TpD 6.ITO 7.Glass	1.08 1.08	21.8 22.2	73.6 63.7	17.2 15.2	- Al bcp - PCBM - 30MAPbI3-15S - Poly-TpD - ITO glass	5		

Table S1. Recent approaches in matter of perovskite solar cells.

1.Ag 2.PCBM/BCP 3.CH ₃ NH ₃ PbI ₃ 4.PEDOT:PSS 5.ITO 6.Mica	1.06	23.63	77.0	19.34	A9 PCBMBCP PCBMBCP PCBMBCP PCBMBCP PCBMBCP TO TO TO TO TO TO TO TO TO TO	6
1.Ag 2.BCP/PCBM 3.CH ₃ NH ₃ PbI ₃ 4.NiO _x 5.ITO 6.PET	0/1.05 100/1.05 200/1.05 300/1.05 400/1.05 500/1.05 bending cycle	19.21 19.14 19.17 18.83 18.91 18.70	67.94 66.82 65.55 62.8 60.48 57.46	13.64 13.36 13.14 12.36 11.95 10.93	Ag Perovskite NiO _x PET/ITO	7
1.Ag 2.Spiro-MeOTAD 3.CH ₃ NH ₃ PbI ₃ 4.SnO ₂ 5.ITO 6.PEI 7.Substrate	Rigid/1.05 Flexible/10.8	22.57 20.06	75 63	17.73 13.57	Ag Spiro-OMeTAD CHI ₃ NH ₄ PbH ₃ SnO ₂ ITO/PEI substrate	8
1.MoO ₃ 2.Ag 3.MoO ₃ 4.Spiro-MeOTAD 5.CH ₃ NH ₃ PbI ₃ 6.PC ₇₂ BM 7.ITO 8.Glass	336/0.904 247/0.873 160/0.978 138/0.982 93/0.983 50/0.933 45/0.994 40/0.921 MAPbI ₃ thickness (mm)	14.97 14.91 14.11 13.47 12.28 8.81 6.97 7.24	48.96 46.35 56.37 64.39 63.09 50.49 53.48 49.04	6.76 6.31 9.00 9.13 9.23 4.13 3.91 3.50	CHINEROUS CHINER	9
1.Ag 2.BCP 3.PC61BM 4.CH ₃ NH ₃ PbI _{3-x} CI _x 5.HTL 6.ITO	GO/0.96 a-GO/1.00 PEDOT:PSS/0.90 a-PEDOT:PSS/0.95 ap- PEDOT:PSS/0.97 HTL layer	16.69 18.40 20.34 20.73 20.06	74.4 76.8 68.8 68.7 69.7	11.97 14.14 12.58 13.51 13.38	$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	10

 1.Au 2.variated Perovskite layer along with HTL 3.ZnO 4.DMD 5.Nanopaper 	CH ₃ NH ₃ PbI ₃ /0.86 CH ₃ NH ₃ PbI ₂ Br/0.89 CH ₃ NH ₃ PBIBr ₂ /0.91 CH ₃ NH ₃ PbBr ₃ /0.84 Perovskite layer	15.37 14.82 10.30 8.22	48.20 41.10 40.80 42.80	6.37 5.42 3.82 2.95	Au Perovskite and HTL ZnO DMD on Nanopaper	11
1.Au 2.HTM 3.CH ₃ NH ₃ PbI _{3-x} CI _x 4.TiO ₂ 5.ITO + Au 6.PET	9/1.02 12/1.05 15/1.07 MAI concentration (mg/mL)	18.2 19.8 19.7	49 60 54	9.06 12.5 11.3	Au Au HTM H,NH,PBJ,-CI, Au TO PET	12
1.Ca/Ag 2.PCBM 3.CH ₃ NH ₃ PbI _{3-x} CI _x 4.PEDOT:PSS 5.Au 6.MoO ₃ 7.SU-8	0.93	13.17	73.89	9.05	Ca/Ag PCBM CH ₃ NH ₃ Pbl _{3-x} Cl _x PEDOT:PSS Au MoO ₃ SU-8	13
1.Au 2.Spiro-MeOTAD 3.PCBM/PEG 4.TiO ₂ 5.FTO 6.Glass	No PCBM/PEG/0.67 No PCBM/PEG/0.96 With PCBM/1.04 With PCBM/1.07 With PEG/0.80 With PEG/1.05 With PCBM/PEG/1.08 With PCBM/PEG/1.10	19.72 22.47 22.82 22.88 22.13 22.92 22.03 23.03	29.7 57.9 56.5 58.0 35.3 65.8 63.7 67.3	3.9 12.5 13.3 14.2 6.3 16.3 15.9 17.1	Au Spiro-MeOTAD PCBM/PEG seaffold Perovskite TiO ₂ FTO/glass	14
1.Au 2.Spiro-MeOTAD 3.TiO ₂ Bacteriorhodopsin (bR) CH ₃ NH ₃ PbI ₃ 4.cp-TiO ₂ 5.FTO 6.Glass	TiO ₂ /1.027 TiO ₂ +bR/1.058	22.59 22.61	61.8 70.5	14.59 17.02	Au Electrode Spiro-OMeTAD TiO,/bR/Perovskite cp-TiO ₂ FTO Glass	15

Device Structure (Top to Bottom)	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)	Ref.
Ag/LiF/rhodhamine 101/C60/rhodamine 101/PCBM/CH ₃ NH ₃ PBI ₃ /MSA-	0.87	17.2	57.0	8.60	16
PEDOT:PSS/PET					
Al/LiF/C60/CH ₃ NH ₃ I/PEDOT:PSS/Graphene-MO/PEN	0.80	15.0	60.0	7.60	17
Au/PCBM/CH ₃ NH ₃ PbI ₃ /Poly-TDP/PEDOT:PSS/AZO/Ag/AZO/PET	1.04	14.3	47.0	7.00	18
Al/TiO ₂ /PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/PET	0.75	15.8	41.0	4.90	19
Al/PCBM/ CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/PH1000/A/PET	0.91	19.5	80.0	14	20
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /PEI/PEDOT:PSS/PET	0.95	17.2	59.7	9.73	21
Al/PCBM/CH ₃ NH ₃ PbI ₃ /SWCNT/PET	0.71	11.8	46.0	5.38	22
Ag/PCBM/PFN-PI/CH ₃ NH ₃ I/PEDOT:PSS/GO/Ag/PET	0.94	12.7	66.2	7.92	23
Al/LiF/BCP/C60/CH ₃ NH ₃ I ₃ /PEDOT:PSS/Graphene-Mo/PEN	1	21.7	0.8	16.80	24
hc-PEDOT:PSS/Spiro-MEOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /PEI/Ag/PSSNa/PES	1.07	15.8	70.0	11.80	25
Ag/PC ₇₁ BM/CH ₃ NH ₃ PbI ₃ /P3HT/Graphene/PET	1.04	18.6	59.4	11.48	26
Eutectic Ga-In/PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/NOA 63	0.92	16.6	70.5	10.75	27
Al/In ₂ O ₃ coupled with Ni/MoO ₃ /Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /C60/ZnO/AZO/PET	1.08	16.1	68.6	12.20	28
Ag/Ca/PCBM/CH ₃ NH ₃ PBI _{3-x} CI _x /PEDOT:PSS/Au/MoO ₃ /NOA63	0.83	13.9	60.7	6.96	29
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /TiO ₂ /IZO/PET	1.05	18.2	70.0	13.20	30
PET accompanied with Ni mesh/PEDOT:PSS/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ .	0.98	17.0	61.0	10.30	31
_x CI _x /Al ₂ O ₃ /TiO ₂ /Ti					
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /TiO ₂ /IZO/PET	1.05	18.2	70.0	13.20	32
ITO/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /mp-TiO ₂ /c-TiO ₂ /Ti layer	0.10	18.5	61.0	11.01	33
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /TiO ₂ /Ti	0.89	9.5	72.8	6.15	34
Ag nanowire/ Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /TiO ₂ /Ti	0.92	16.5	49.0	7.45	35
CNT/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /TiO ₂ nanotubes/Ti	0.99	14.4	68.0	8.31	36
CNT sheet/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /mp-TiO ₂ /C-TiO ₂ /Stainless steel	0.66	10.2	48.7	3.30	37
PEN-ITO/PEDOT/CH ₃ NH ₃ PbI ₃ /TiO ₂ nanowire/Ti layer	0.94	21.7	63.0	13.07	38
CNT/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /ZnO nanorod/ZnO seed/Stainless steel	-	-	-	3.80	39
Ag nanotube/ ZnO/CH ₃ NH ₃ PbI ₃ /CuI/Cu	0.96	22.5	59.2	12.80	40
Ag nanotube/SWCNT/CH3NH3PbI3-xCIx/mp-TiO ₂ /c-TiO ₂ /CNT fiber	0.62	8.8	56.4	3.03	41
CNT/CH3NH3PbI3/meso-TiO2/c-TiO2/Ti	0.85	14.5	56.0	7.10	42
CNT sheet/Spiro-MeOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /TiO ₂ nanotube/Ti substrate	-	-	-	5.22	43
CNT/ CH ₃ NH ₃ PbI ₃ /TiO ₂ /ITO/PEN	0.91	15.9	65.6	9.49	44
Ag nanowires/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /mp-TiO ₂ /c-TiO ₂ /Ti	0.73	12.0	44.0	3.85	45
CNT/CH3NH3PbI3/TiO2 nanotubes/Ti substrate	0.92	2.6	48.0	1.16	46
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /meso-TiO ₂ /c-TiO ₂ /Ti substrate	0.71	12.3	60.9	5.35	47

Table S2. Review of recent developed flexible perovskite solar cells.

Ag/Spiro-MeOTAD/ CH ₃ NH ₃ PbI _{3-x} CI _x /TiO2/ITO/PET	1.03	15.3	51.4	8.10	48
Ag/Spiro-MeOTAD/ CH ₃ NH ₃ PbI _{3-x} CI _x /TiOx/ITO/PEN	0.95	21.4	60.0	12.20	49
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /TiO2/ITO/PET	1.03	20.9	70.0	15.07	50
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /mp-TiO ₂ /c-TiO ₂ /ITO/PET	0.86	14.1	70.0	8.4	51
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /mp-TiO ₂ /c-TiO ₂ /ITO/PET	3.39	5.2	71.0	3.10	51
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /BK-TiO ₂ /SnO _x /ITO/PET	1.03	19.0	68.0	13.40	52
Au/PTAA/CH ₃ NH ₃ PbI _{3-x} CI _x /TiO ₂ /ITO/PET	0.91	21.3	69.0	13.50	53
$Au/PTAA/CH_3NH_3Pb(I_{1-x}Br_x)_3/TiO_2/ITO/PET$	1.11	20.8	69.0	15.88	54
Au/Spiro-MeOTAD/CH3NH3PbI3/UV-Nb:TiO2/ITO/PEN	1.04	20.2	76.0	16.01	55
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /BK-TiO ₂ /c-TiO ₂ /ITO/PEN	1.07	19.5	75.0	15.76	56
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /mp-TiO ₂ /c-TiO ₂ /ITO/PET	0.88	14.9	70.0	9.20	57
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI _{3-x} CI _x /me-TiO ₂ /c-TiO ₂ /ITO/PET	0.66	33.7	77.3	12.10	58
C/CH ₃ NH ₃ PbI ₃ /ZnO/ITO/PET	0.76	13.4	42.0	4.29	59
Au/Spiro-MeOTAD/CH3NH3PbI3/ZnO nanorod/c-ZnO/ITO/PET	0.80	17.5	43.1	2.62	60
Ag/Spiro-MeOTAD/CH3NH3PbI3/ZnO quantum dots/Graphite/ITO/PET	0.94	16.8	62.0	9.73	61
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /ZnO/ITO/PET	1.03	13.4	73.9	10.20	62
Au/PTAA/CH ₃ NH ₃ PbI ₃ /ZnO/ITO/PI	1.10	17.6	79.4	15.40	63
Au/PTAA/CH ₃ NH ₃ PbI ₃ /ZnO/ITO/PEN	1.10	18.7	76.0	15.50	64
Au/PTAA/CH ₃ NH ₃ PbI ₃ /ZnO/ITO/PI	1.10	17.6	79.4	15.40	63
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /ZnO/ITO/PET	0.87	19.2	67.6	11.29	65
Au/PTAA/CH3NH3PbI3/ZnSnO4/ITO/PET	1.05	21.6	67.0	15.30	66
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /ZnO/ITO/Flexible glass substrate	0.98	19.3	69.0	13.14	67
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /PCBM/Zn ₂ SnO ₄ /ITO/PET	1.05	17.4	63.8	11.61	68
$Au/PTAA/CH_3NH_3Pb(I_{0.9}Br_{0.1})_3/ZnSnO_4/ITO/PEN$	1.10	20.4	73.0	16.50	69
Au/PTAA/CH3NH3PbI3/PCBM/TiO2/FTO/PEN	0.99	18.7	60.0	11.10	70
Au/Spiro-Ome TAD/ss-IL(HC(NH ₂) ₂ PbI ₃) _{0.85} (CH ₃ NH ₃ PbBr ₃) _{0.15} /ITO/PET	1.07	22.7	66.2	16.09	69
Ag/PEDOT:PSS/P3HTa/CH ₃ NH ₃ PbI ₃ /PCBM/ZnO/ITO/PET	0.84	11.4	56.0	5.4	71
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /Al ₂ O ₃ /ITO/PET	1.00	22.8	67.0	14.60	72
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /PCBM/FPI-PEIE/ITO/PET	1.07	17.8	53.0	10.00	73
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /CDIN/PEIE/ITO/PET	1.02	19.7	70.4	14.15	74
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /Ti/PET-ITO	0.83	15.2	66.0	8.39	75
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PBI _{3-x} CI _x /W(Nb)O _x /ITO/PEN	0.98	21.4	75.0	15.65	76
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /Li:SnO ₂ /ITO/PEN	1.01	19.8	59.3	11.84	77
Au/Spiro-OTAD/CH ₃ NH ₃ PbI ₃ /PCBM/SnO ₂ /ITO/PEN	1.08	20.6	63.0	14.00	78
$Au/Spiro-MeOTAD/Nb_2O_5/(HC(NH_2)_2PBI_3)_{0.85}(CH_3NH_3PbBr_3)_{0.15}/Nb_2O_5/ITO/PET$	1.12	23.5	63.1	15.56	79
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /Li:SnO ₂ /ITO/PET	1.02	20.6	76.3	14.78	2
Au/LN-P3HT/CH3NH3PbI3/PCBM/PEIE/ITO/PEN	0.88	22.0	69.6	13.12	80

Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /C ₆₀ /ITO/PEN	1.02	23.2	67.3	16	56
Au/Co-P3HT/CH ₃ NH ₃ PbI ₃ /PCBM/PEIE/ITO/PEN	1.01	19.8	59.3	11.84	77
Au/Spiro-MeOTAD/(HC(NH ₂) ₂ PbI ₃) _{0.9} (CH ₃ NH ₃ PbI ₃) _{0.1} /ITO/PET	0.96	20.7	64.0	12.70	81
Ag/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /C ₆₀ /PEIE/ITO/PEN	1.02	17.9	73.0	13.30	82
Ag/MoO ₃ /Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /ITO/PEN	0.96	17.4	56.0	11.34	83
Al/Bis-C ₆₀ /PCBM/CH ₃ NH ₃ PbI _{3-x} CI _x /PEDOT:PSS/ITO/PET	0.86	16.5	64.0	9.20	84
Al/TiO _x /PCBM/CH ₃ NH ₃ PbI _{3-x} CI _x /PEDOT:PSS/ITO/PET	0.88	14.4	51.0	6.40	85
Al/BCP/PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/ITO/PET	0.92	7.9	62.0	4.50	86
Ag/Bis-C ₆₀ /PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/ITO/PET	0.86	14.6	75.0	9.43	87
Ag/Bis-C ₆₀ /PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/ITO/PET	0.87	13.9	59.0	7.14	88
Al/Ca/PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/ITO/PET	0.99	17.2	72.0	12.25	89
Ag/ZnO/PCBM/CH ₃ NH ₃ PbI _{3-x} CI _x /PEDOT:PSS/ITO/PET	0.90	10.9	50.0	4.90	71
Al/Ca/PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/ITO/PET	0.92	15.0	49.2	6.80	90
Ag/ZnO/PC ₆₁ BM/CH ₃ NH ₃ PbI _{3-x} CI _x /C ₃ -SAM/PEDOT:PSS/ITO/PET	0.98	13.7	38.0	5.10	91
Ag/Bis-C ₆₀ /CH ₃ NH ₃ PbI ₃ /NiOx/ITO/PET	1.00	20.7	70.5	14.53	63
Ag/LiF/PCBM/MAPbI ₃ /CH ₃ NH ₃ PbI _{3-x} CI _x /PEI-HI/PEDOT:PSS/ITO/PET	19.01	1.1	68.0	13.80	92
Ag/Bis-C ₆₀ /CH ₃ NH ₃ PbI ₃ /NiOx/ITO/PET	1.00	20.9	69.6	14.19	93
Ag/PCBM/CH ₃ NH ₃ PbI ₃ /NiOx/ITO/PEN	1.04	18.7	68.9	13.43	94
Al/LiF/C ₆₀ /CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/ITO/PEN	0.97	21.5	83.0	17.30	24
Ag/BCP/PCBM/CH ₃ NH ₃ Pb(I _{0.9} Cl _{0.1}) ₃ /NiO _x /ITO/PEN	1.04	17.7	64.2	11.84	95
Ag/PCBM/CH ₃ NH ₃ PbI _{3-x} CI _x /ITO/PET	0.67	12.4	42.4	2.90	96
Ag/PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/ITO/PET	0.89	19.4	68.3	11.29	97
Ag/BCP/PCBM/CH ₃ NH ₃ PbI ₃ /PEDOT:PSS/c-ITO/Ag nanowires coupled with GFRhybrimer	0.99	21.5	66.0	14.15	98
Ag/BCP/C ₆₀ /FASnI ₃ /PEDOT:PSS/ITO/PEN	0.31	16.1	62.6	3.12	99
Al/PCBM/CH ₃ NH ₃ PbI ₃ /ITO	0.96	14.8	68.1	9.70	100
Ag/PCBM/CH ₃ NH ₃ PbI ₃ /PhNa-1T/ITO/PEN	1.03	18.4	77.4	14.70	101
Ag/AUH/C60/PCBM/CH3NH3PbI3/PEDOT:PSS/ITO/Glass	0.95	18.3	73	12.6	102
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /MgO/ITO/Glass	9.09	0.289	28.48	0.746	103
Au/Spiro-MeOTAD/CH3NH3PbI3/SnO2/ITO/Glass	21.10	1.10	64.82	15.08	103
Au/Spiro-MeOTAD/CH3NH3PbI3/SnO2/SnO2/ITO/Glass	21.48	1.07	67.46	15.48	103
Au/Spiro-MeOTAD/CH3NH3PbI3/MgO (3k rpm)/SnO2/ITO/Glass	21.31	1.13	67.26	16.26	103
Au/Spiro-MeOTAD/CH3NH3PbI3/MgO (5k rpm)/SnO2/ITO/Glass	21.26	1.12	74.78	17.92	103
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /MgO (6k rpm)/SnO ₂ /ITO/Glass	20.59	1.12	72.27	16.82	103
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ / SnO ₂ /ITO/Glass under 200 lx light irradiation	32.87	0.836	59.59	20.23	103
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ / SnO ₂ /ITO/Glass under 400 lx light irradiation	62.99	0.871	58.30	21.33	103
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /MgO (5k rpm)/SnO ₂ /ITO/Glass under 200 lx light irradiation	32.84	0.867	69.69	24.50	103

Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /MgO (5k rpm)/SnO ₂ /ITO/Glass under 400 lx light irradiation	63.21	0.901	72.04	26.47	103
Au/Spiro-MeOTAD/CH ₃ NH ₃ PbI ₃ /SnO ₂ /ITO/PET with flat substrate	18.70	1.03	51.65	9.95	104
Au/Spiro-MeOTAD/CH $_3$ NH $_3$ PbI $_3$ /SnO $_2$ /ITO/PET with pillar-like substrate	19.18	1.03	52.80	10.43	104
Al/PCBM/mp-NiO/cp-NiO/FTO	0.83	4.90	35.0	1.50	105
Ag/BCP/PCBM/Psk/mp-Al ₂ O ₃ /cp-NiO/FTO	1.04	18.0	72.0	13.5	106
Al/BCP/PC ₆₁ /BM/Psk/mp-NiO/cp-NiO/ITO	1.04	13.24	69.0	9.51	107
Carbon electrode/Psk/mp-NiO/mp-TiO ₂ /cp-TiO ₂ /FTO	0.89	18.2	71.0	11.4	108
Carbon electrode/Psk/mp-NiO/mp-ZrO2/mp-TiO2/cp-TiO2/FTO	0.965	20.4	72.0	14.2	109
Al/BCP/PCBM/Psk/mp-NiO/cp-NiO/ITO	0.96	19.8	61.0	11.6	110
Al/BCP/C ₆₀ /Psk/TCO free Au-NiO layer	1.02	13.04	77.0	10.24	111
Carbon electrode/Psk/mp-NiO/mp-ZrO ₂ /mp-TiO ₂ /FTO	0.917	21.36	76.0	14.9	112
Al/PCBM/Psk/cp-NiO/FTO	0.786	14.2	65.0	7.26	113
Carbon electrode/Psk/mp-NiO/mp-Al2O3/mp-TiO2/cp-TiO2/FTO	0.915	21.62	76.0	15.03	114
Al/PCBM/Psk/cp-NiO/ITO	1.05	15.4	48.0	7.60	115
Al/BCP/PCBM/Psk/cp-NiOx/ITO	0.92	12.43	68.0	7.80	116
Au/BCP/PCBM/Psk/cp-NiO/FTO	1.10	15.17	59.0	9.84	117
Al/BCP/PCBM/Psk/cp-NiO _x /ITO	0.90	13.16	65.0	7.75	118
Ag/bis-C ₆₀ /C ₆₀ /Psk/cp-NiO _x /ITO/PET	0.997	20.66	70.5	14.53	119
Ag/PCBM/Psk/cp-NiO _x /FTO	1.09	17.93	74.0	14.42	120
Ag/bis-C ₆₀ /C ₆₀ /Psk/cp-NiO _x /ITO	1.03	21.80	78.4	17.60	119
Ag/C ₆₀ /PC ₆₁ BM/Psk/sol-gel cp-Cu:NiO layer/ITO	1.11	18.75	72.0	14.98	121
Al/ZnO/Psk/cp-NiO _x /ITO	1.01	21.0	76.0	16.1	122
Ag/bis-C ₆₀ /C ₆₀ /Psk/cp-Cu:NiO through combustion/ITO	1.05	22.23	76.0	17.74	123
Ag/PCBM/Psk/cp-NiO _x coupled with PEDOT/ITO	1.02	19.4	70.0	14.11	124
Al/LiF/PCBM/Psk/cp-NiO/ITO	1.06	20.2	81.3	17.3	125
Ag/Zr Acac/ PCBM/Psk/cp-Cs:NiO _x /FTO	1.120	21.77	79.3	19.35	126
Al/ZnO/Psk/cp-NiO _x /ITO	1.01	21.0	76.0	16.1	122
Ni/NiO _x /Psk/cp-TiO ₂ /FTO	0.77	17.88	53.0	7.28	127
Ag/Ti(Nb)O _x /PCBM/Psk/cp-NiMgLiO/FTO	1.072	20.21	74.8	16.2	128
Al/Zr Acac/PCBM/Psk/cp-Cu:NiO _x /FTO	1.12	23.07	77.5	20.50	129
Al/ZnMgO/PCBM/Psk/cp-NiMgO/ITO	1.078	21.3	79.0	18.5	130

Table S3. A review of recently developed dye-sensitized solar cells.

Device Composition	V _{oc}	J_{sc}	FF (%)	PCE	3D structure	Ref.
	(*)	(IIIA/CIII ⁻)	(70)	(70)		
1.CuS/PET 2.N719 TNARs 3.Ti foil 4.Cu electrode	With CuS-PET/0.45 With Pt-PET/0.44	19.78 17.38	50.79 42.15	4.54 3.24	Cus/PET 7/19/TNARs Ti Foil Cu electrode	131
1.Lyocell fabric 2.AC doped graphite 3.Polymer electrolyte 4.AC doped graphite 5.Lyocell fabric Along with side sealings	0/0.656 25/0.723 50/0.730 75/0.714 100/0.699 wt% of AC Pt-FTO/0.726 AC-GC Fabric/0730	8.6 15.5 14.6 13.4 14.5 15.5	41.8 43.9 62.8 37.6 37.7 73.5 62.8	2.36 4.92 7.09 3.91 3.54 7.76 7.09	e e e e c c c c c c c c c c c c c	132
1.PEDOT:PSS 2.TiO2 3.N719 dye 4.PAN nanofiber 5.Graphene flakes 6.PEDOT:PSS 7.PET	Standard/0.69 Device/0.579	17.93 6.77	60.65 39.46	7.39 2.59	PEDOT:PSS coated mesh Sensitizer (N7 Sensitizer (N7 Graphene nano sheets PEDOT:PSS coated PET	133
Highly flexible wire- shaped solar cell with coupled carbon fiber (CF) and PEDOT:PSS which contain the electrolyte and provide a fully dye-sensitized solar cell	DCF150/0.481 DCF150-PEDOT2/0.730 DCF150-PEDOT4/0.685 DCF150-PEDOT7/0.678 DCF50-PEDOT4/0.723 DCF100-PEDOT4/0.737 With diverse dip-coating application numbers (i.e. 0, 2, 4 and 7)/V _{oc}	7.49 9.17 11.15 12.01 8.58 9.60	27 71 70 69 64 67	0.98 5.08 4.73 5.34 5.61 3.97	CF-PEDOT Electrode	134

1.Capillary	HT SM/-0.62	1.0	0.71	0.5	C 3D light-collected	
2.Electrolyte	TT ⁻ SM/-0.72	3.2	0.80	1.9	Transparent	
3.Pt wire	TT-N-1 SM/-0.76	4.1	0.83	2.6	Flexible	
4.covered Ti wire	TT-N-2_SM/-0.75	6.0	0.83	3.7		
with dye sensitized	TT-N-3_SM/-0.75	7.1	0.83	4.4		
TiO_2 nanorod	TT-N-4_SM/-0.73	6.2	0.83	3.8		
	3.7 cm long dye-sensitized					
	solar cell based on HT, TT					
	and TT-N-x (where x=1, 2,				Dre consistent TiOn	135
	3, 4) TiO ₂ nanorods under				Dye-sensitized 1102	
	standard illumination mode				Nanorou Arrays	
	irradiation				→Ti wire	
					→ Pt wire	
					>Electrolyte	
					→ Capillary	
1.Decorated cotton	FT-PTO base/0.67	15.88	78.52	8.44	\rightarrow \bigcirc \rightarrow	
fabric with graphene	HC-GFC base/0.66	14.75	70.92	6.93	e e	
flakes:	Platinized-Fluorinated Tin					
1.1.Cotton fabric	oxide (FT-PTO)				ships chases	
1.2.BSA treated layer	Highly conductive graphene					
1.3.Graphene oxide	coated cotton fabric (HC-					
nanosheets treated	GFC)					
1.4.Decorated cotton					tion ti	
with graphene flakes					duct da	136
2.Cathode:						
2.1.PET film						
2.2.Decorated cotton						
fabric with graphene						
3.Anode:					PET Film	
3.1.Holed FTO Glass						
3.2.photoanode					Graphene Nanosheets Coated	
3.3.seprator					(HC-GCF)	
1 Photoanode	1/0.67	3 34	37	1 38	Photoanode	
2 DSSC PEM	0.5/0.64	2.30	30	1.50	Titanium grid	
3.DSSC cathode	0.3 /0.61	2.00	30	2.03		
4 EDLC electrode	0.2/0.64	1 60	30	2.59		
5 EDLC PEM	0.15/0.63	1 26	34	2.96	Cathode	
6 EDLC electrode	Illumination (Sun)/V _{ac}	1.20	5.	2.90	Stainless steel grid	
DSSC [•] dve-sensitized						
solar cell						137
EDLC: electrical					EDLC electrode	
double laver						
capacitors						
PEM: polymer						
electrolyte membrane						

1.Packing tube 2.Electrolyte 3.Pt wire 4.Sensitized dye 5.Ti wire	FDSC/0.61 B-1/0.64 B-4/0.65 Al-1/0.69 Al-4/0.71 DM/0.70	8.93 15.44 15.04 35.83 49.80 60.71	74 73 72 65 58 54	4.03 7.21 7.04 16.07 20.51 22.95	Ti Wire Pt Wire Electrolyte Sensitized Layer Packaging tube	138
1.Tube 2.Pt wire 3.Mesoporous layer 4.TiO ₂ 5.Ti wire	~0.68 At atomic layer deposition ALD) thickness of 15 nm	13.816	~82.5	7.41	Pt wire Mesoporous layer Ti wire	139
1.MOF-525 2.Conductive binder s-PT 3.1 D carbon fiber in CC	MOF-525/s-PT-1/0.8 MOF-525/s-PT-2/0.79 MOF-525/s-PT-3/0.80 MOF-525/s-PT-4/0.80 MOF-525/s-PT-5/0.80 Bare s-PT/0.79 Bare MOF-525/0.78 Pt/0.77 Base of device/V _{oc} sulfonated-poly(thiophene- 3-(2-(2-methoxyethoxy) ethoxy)-2,5-diyl) (s-PT)	12.67 12.86 16.14 12.66 10.95 12.32 12.68 12.82	70 71 70 70 71 48 66	6.96 7.21 8.91 6.97 5.97 6.94 4.78 8.21	1D Carbon fiber in CC Conductive binder s-PT MOF-525 MOF-525	140
1.Glass 2.FTO 3.Pt 4.Electrolyte 5.Sensitized dye 6.TiO ₂ 7.Ag 8.Kapton or Fabric	Kapton/0.60 Fabric/0.30	32.85 36.56	36 25	7.03 2.78	FTO coated glass Platinum Liquid electrolyte Dyes TiO ₂ Ag Kapton/Fabric with interface	141

1.Plastic layer 2.coupled Ag with CoS ₂ layer 3.CoS ₂ 4.phthaloylchitosan gel 5.TiO ₂ :N3 dye 6.ITO 7.Plastic substrate	0.65 Pt based /60	17.51 67	64 62	7.09 7.04	Plastic substrate CoS ₂ Phthaloylchitosan Gel TiO ₂ :N3 dye ITO Plastic substrate	142
Ag decorated ZrO_2/C	Pt/0.73	13.28	54.25	5.26	Fast redox recations $3f \rightarrow I_j + 2e$ $L_j + 2e \rightarrow 3f$	
nanofiber as a dye-	Ag /0.74	10.77	48.81	3.89		
sensitized solar cell	$ZrO_2/C/0.74$	9.85	51.13	3.73		
	$Ag@ZrO_2/C-1/0.74$	11.16	51.57	4.21		1.42
	$Ag(a)ZrO_2/C-2/0.75$	11.54	52.04	4.50	+ ° °	145
	Ag@ZrO ₂ /C-3/0.75	11.62	52.98	4.62	· · · · · · · · · · · · · · · · · · ·	
	Ag@ZrO ₂ /C-4/0.76	11.79	53.23	4.77		
	Ag@ZrO ₂ /C-5/0.77	11.57	52.86	4.71	· · · · · · · · · · · · · · · · · · ·	
					Caurigo transport	
					↓ ZO ₂ NPs Electrolyte ion	

 Table S4. Review of the recently developed organic solar cells.

Device	V _{oc}	J _{sc}	FF	PCE	3D structure	
Composition	(V)	(mA/cm ²)	(%)	(%)		
-		· · ·				
1.Al electrode	1.5/1.0/0.0 / 0.976	10.71	57	6		
2.LiF	1.5/0.9/0.1 / 0.976	11.83	56	6.47	Al	
3.Ternary blend	1.5/0.85/0.15 / 0.976	12.60	57	7.01	A	
(ITIC/P(NDI2HD	1.5/0.8/0.2 / 0.976	11.61	56	6.35		
-Se)/PTP8)	1.5/0.7/0.3 / 0.976	10.47	56	5.72	any Bleno	144
4.PEDOT:PSS	1.5/0.5/0.5 / 0.976	9.23	57	5.14	Telling to	
5.ITO	1.5/0.3/0.7 / 0.976	9.24	54	4.87		
	1.5/0.0/1.0 / 0.976	8.76	58	5.10		
	PTP8/P(NDI2HD-T)/ITIC / V _{oc}					
1.Ag	Normal Device/0.62	15.7	64	6.4		
2.CIL	Based on MeOH/0.63	15.9	65	6.5		
3.Active layer	Based on PEG/0.74	16.1	68	8.1	the second se	
4.PEDOT:PSS	Based on FSO-100/0.77	16.0	74	9.2	Ag	
5.ITO					CIL	
6.Glass					Active layer	
					PEDOT:PSS	145
					ITO/glass	
					Torgiass	

1 Al electrode	0 / 0 571	9 44	56 58	3 04		
2 P3HT·PCBM	0 01 / 0 580	9.87	57.86	3 31	P3HT:PCBM GR Ag paste	
3 PEDOT-PSS	0.02 / 0.592	10.43	50.31	3.66	CDOT: PSS	
J.I EDOT.I 55	0.02 / 0.392	10.45	50.16	3.00		
4. Oraphene	$(\alpha/I)/V$	10.57	39.10	5.05		
5.Ag electrode	$n_G (g/L) / V_{oc}$				AI	
						146
					7	140
					3-1 - 8	
					l si `]	
					6 -	
1.Top metallic	ZnO-S.C. / 0.62	9.40	56.55	3.29	RO F	
electrode	ZnO-B.P. / 0.46	1.23	36.64	0.21	KHID	-
2.PEDOT:PSS	ZnO (D-1:3)-B.P. / 0.62	8.61	56.97	3.03		
3.PTB7:PC ₇₁ BM	ZnO (D-1:6)-B.P. / 0.62	9.90	58.39	3.61	РТВ	
4.ZnO	ZnO (D-1:10)-B.P. / 0.62	9.45	55.92	3.25	+	147
5.ITO						-
6.Glass	ZnO-S.C. / 0.74	14.96	67.29	7.43	PEDOT:PSS	
	ZnO-B.P. $/ 0.73$	45.00	69.26	7.63		
	S.C.=spin coating, B.P.=brush			,		
	nainted and D=diluted				PC71B	1
1 Al electrode	Based on P3HT-ICRA					
2 Active layer	Bafore transfer / 0.850	7 70	71.6	1 75	Active layer	
3 WAW layer	After transfer /0.851	7.19	67.42	4.75	AI PAN Glass	
$(WO / A \alpha / WO)$		0.22	67.90	5.26		
$(WO_3/Ag/WO_3)$	110/0.830	9.22	07.09	5.50		148
4.PAN	Deced on DTD7.DC DM					
5.Glass	Dased OII FID /:FC71DWI	14.22	(2.21	6.22		
	A Gran Arrange Gran (0, 60)	14.55	02.21	0.23		
	Alter transfer /0.69	15.38	01.00	5./1		
	110 / 0. / 1	15.41	64.72	/.14		
					wo,	
					Ae WO,	
1.PEDOT:PSS	PEDOT/Graphene / 0.74	8.91	43.4	2.85	Lamination	
2 Vanadium oxide	Ag/0.72	10.28	51.2	3 78	process	
3 PffBT4T-	Top electrode / V	10.20	01.2	5.70	Composite	
20D·PCBM						
4 PEIE					PEDOT:PSS	
$5 7n\Omega_{2}$					Vanadium oxide	
6 ITO					PHB14120D1PCBM	149
7 Δα						
					PET	
0.110 0 DET substrata						
9.PET substrate					Light and the second	
					Anode	
					(Composite)	
					Cathode L (ITO/Ag/ITO)	
1		1	1		1	1

 Ag electrode MoO₃ Active layer PFN Ag nanowires PET substrate 	Glass/ITO/PFN / 0.753 PET/Ag nanowire/PFN /0.740	16.5 12.8	66.6 65.3	8.22 6.13	MoO ₃ Active layer PFN AgNWs PET	150
PTZBI:N2200 all polymeric system	MeTHF / 0.84 MeTHF/DIO /0.83 CF / 0.90 CB /0.89 Solvent / V _{oc} 2-Methyltetrahydrofuran (MeTHF), MeTHF / 1,8- diiodooctane (MeTHF/DIO), chloroform (CF) and chlorobenzene (CB)	14.86 12.43 9.05 6.23	66.65 65.93 55.43 52.99	8.36 6.78 4.49 2.92	Blade coating in air	151
1.NPB sacrificial layer 2.Ag 3.PCDTBT:PC ₇₁ B M 4.Metallic TCE 5.NOA63 film 6.PSC/NOA63 film 6.Elstomeric substrate 7.Si layer	0.9	10.39	62.0	5.8	Fabrication of ultrathin PSC on Si substrate Peeling of ultrathin PSC from Si substrate Prestrain Freesasing Attaching of the ultrathin PSC on the prestretched elastomeric substrate Uttrathin PSC Uttrathin PSC Uttrathin PSC PCOTBT.PC., BM NDAB3 film Elastomeric substrate Science at the prestretched elastomeric substrate PCOTBT.PC., BM Elastomeric substrate Science at the prestretched elastomeric substrate	152
1.Ag MoO3 3.PTB7- th:PC ₇₁ BM 4.PFN 5.ZnO 6.ITO PEN 7.PDMS	0 / 0.66 10 / 0.61 20 / 0.61 30 / 0.60 Compression (%) / V _{oc} 0 / 0.66 5 / 0.66 10 / 0.60 20 / 0.61 30 / 0.68 40 / 0.68 50 / 0.63 Compression-stretching cycle /V _{oc}	17.44 16.66 15.02 14.65 17.44 16.93 16.02 13.80 15.54 14.18 13.74	46 52 51 44 46 46 46 50 55 44 47 42	5.32 5.29 4.66 3.88 5.32 5.06 4.79 4.58 4.55 4.55 3.66	Ag/MoO ₃ PTB7-Th:PC ₇₁ BM PFN ZnO ITO PEN PDMS	153
1.Ag 2.MoO3 3.PTB7- Th:PC ₇₁ BM 4.PFN 5.ZnO 6.PEDOT:PSS 7.Ag-grid 8.PET substrate	ITO / 0.774 Ag-grid (rhombus) / 0.773 Ag-grid (square) / 0.770 Ag-grid (hexagon) / 0.761 Electrode / V _{oc}	5.16 14.30 14.13 14.38	25.88 58.14 58.81 58.31	1.03 6.43 6.39 6.38	Ag MoO, PTB7-Th:PC72BM PFN ZnO PEDOT:PSS PET/Ag-grid	154

Table S5. Summary	y of recently	developed	wire-shaped	solar cells
-------------------	---------------	-----------	-------------	-------------

Structure	Mechanism	V _{oc} (V)		FF (%)	PCE (%)	3D Structure	Ref.
1 Substrate	De				0.910		
2.Mn wire 3.ZnO arrays 4.Electrolyte 5.Counter electrode	DS	0.4	4	-	0.818	hv	155
1.Ti wire 2.sensitized layer	DS	FDSC /0.61 B-1 /0.64	8.93 15.44	74 73	4.03 7.21	Ti Wire	
3.Pt wire		B-4 /0.65	15.04	72	7.04	Pt Wire	138
4.electrolyte 5.Packing tube		Al-1/0.69 Al-4/0.71	35.83 49.80	65 58	20.51	Electrolyte	156
		DM /0.70	60.71	54	22.95	Sensitized Laver	
		Case/V _{oc}				Packaging tube	
1.working electrode 2.Nanoporous TiO ₂ 3.Microporous TiO ₂ 4.CH ₃ NH ₃ PbI ₃ 5.Spiro-MeOTAD 6.Counter electrode	Р	0.825	2.165	35.3	0.631	Counter Electrode Nanoporous TiO2 Working Electrode Microporous TiO2 Spiro-OMeTAD	156
1.Mo wire 2.CulnSe ₂ layer 3.CdS layer 4.ZnO layer 5.ITO layer	All-solid	0.340	13.0	52.2	2.31	Light	157
1.Zn wire	DS	0.5 /0.430	4.357	52.0	0.975	→ Eletrolyte	
2.Dye-sensitized		2/0 375	3 471	37.3 47.0	0.802	Dye sensitized	
4.Electrolyte		3 /0.363	2.500	55.9	0.507	Zn wire Pt wire	158
5.silicon tube		12 /0.307	2.543	39.5	0.308	1 t wite	
		24/0.290	2.343	39.1	0.266	→ Pt wire cross section	
		48/0.263 Synthesis time (b)/V	2.357	35.8	0.222	→ Silicone tube	
		$ \text{ synthesis the (II)/ V}_{\text{oc}}$		1			

1.Glass tube 2.Ti wire 3.Nanoporous TiO2 4.Dye 5.Ti/Pt	DS	Ti_57NT/0.6 Ti_57/0.62 Ti_100/0.65 Ti_150/0.57 Ti_57HP/0.61 Ti_100HP/0.65 Ti_150HP/0.65 Device/V _{oc}	3.82 8.39 9.74 7.13 10.87 12.58 7.23	45 59 64 47 51 58 65	1.03 3.06 4.04 1.93 3.35 4.71 3.05	Glass Tube ← Ti/Pt	159
1.Polymeric Core 2.Metallic layer 3.Zn layer 4.ZnO arrays 5.Electrolyte 6.Fabric	DS	Fe/Zn electrode/0.58	8	-	1.31		160
Phase I 1.CF monofilament 2.TiO ₂ porous layer 3.Dye Phase II 1.Counter electrode 2.Ink carbon Phase III Electrolyte Capillary	DS	D _{CF/TiO2} /0.271 D _{CF/Ti/TiO2} /0.348 D-95 μm/0.329 D-150 μm/0.342 D-250 μm/0.288 D-400 μm/0.256 Device/V _{oc}	11.58 13.06 12.19 14.15 9.85 9.05	32.3 30.4 41.1 39.2 37.7 31.5	1.02 1.38 1.65 1.90 1.07 0.73	TiO ₂ porous layer CF monofilament Dye Capillary Electrolyte Ink carbon	161
Phase ICNT fiberPhase II1.CNT fiber2.TiO2 Layer3.Dye moleculesPhase IIIElectrolyte	DS	CNT fiber/0.64 Solar cell/0.64	9.03 10.06	45 45	2.60 2.94	Electrolyte TiO ₂ layer Dye molecules CNT fiber	162
Phase I $1.CF$ $2.CoNi_2S_4$ arraysPhase IIPhotoanodePhase IIIElectrolyteTransparent sealingtube	DS	CoNi ₂ S ₄ NR-CF/0.68 CoNi ₂ S ₄ ND-CF/0.65 Pt wire/0.68 CF/0.65	15.3 8.6 14.2 7.1	67.7 72.7 66.7 22.4	7.03 4.10 6.45 1.03	Photoanode Transperent sealing tube Eletrolyte solution CE CoNi ₂ S ₄ Carbon fiber	163

Phase I 1.CNT fiber 2.n-TiO ₂ 3.meso-TiO ₂ 4.perovskite layer 5.P3HT/SWNT 6.Ag nanowire Phase II CNT fiber	Р	0.615	8.75	56.4	3.03	CNT fiber meso-TiO2 P3HT/SWNT Piber P3HT/SWNT Ag nanowire 4.8 eV 4.8 eV 4.8 eV Ferovskite Ferovskite CNT CNT	41
Phase I	DS	SWFF-DSSC/0.67	6.1	70	2.8	A	
Pt wire		MWFF-DSSC(2) /0.66	9.4	59	3.6	244	
Phase II		MWFF-DSSC(3) /0.65	11.6	63	4.7		
1.Ti wire		MWFF-DSSC(4) /0.64	13.6	57	4.9		
2.Electrolyte		MWFF-DSSC(5) /0.63	15.2	57	5.4		164
3.Dye-sensitized		MWFF-DSSC(6) /0.61	15.6	69	6.6		
TiO ₂ nanotube array		Without Nb ₂ O ₅					
Phase III		MWFF-DSSC(6)/0.66	18.8	73	9.1		
Capillary		With Nb ₂ O ₅					
		Device/V _{oc}					

Abbreviations: perovskite (P), dye-sensitized (DS), carbon nanotube (CNT), nanoribbon (NR), carbon fiber (CF), nanorod (ND).

References

- 1. Z. Liu, T. Shi, Z. Tang and G. Liao, *Materials Research Bulletin*, 2017, 96, 196-200.
- 2. M. Park, J.-Y. Kim, H. J. Son, C.-H. Lee, S. S. Jang and M. J. Ko, *Nano Energy*, 2016, **26**, 208-215.
- 3. Z. Liu, P. You, C. Xie, G. Tang and F. Yan, *Nano Energy*, 2016, 28, 151-157.
- 4. C. Chen, D. Liu, Y. Wu, W. Bi, X. Sun, X. Chen, W. Liu, L. Xu, H. Song and Q. Dai, *Nano energy*, 2018, **53**, 849-862.
- 5. A. Giuri, S. Masi, A. Listorti, G. Gigli, S. Colella, C. E. Corcione and A. Rizzo, *Nano Energy*, 2018, **54**, 400-408.
- 6. C. Jia, X. Zhao, Y.-H. Lai, J. Zhao, P.-C. Wang, D.-S. Liou, P. Wang, Z. Liu, W. Zhang and W. Chen, *Nano Energy*, 2019.
- 7. C. Li, S. Cong, Z. Tian, Y. Song, L. Yu, C. Lu, Y. Shao, J. Li, G. Zou and M. H. Rümmeli, *Nano Energy*, 2019.
- 8. Y. Li, X. Qi, G. Liu, Y. Zhang, N. Zhu, Q. Zhang, X. Guo, D. Wang, H. Hu and Z. Chen, *Organic Electronics*, 2019, **65**, 19-25.
- 9. M. B. Upama, M. A. Mahmud, H. Yi, N. K. Elumalai, G. Conibeer, D. Wang, C. Xu and A. Uddin, *Organic Electronics*, 2019, **65**, 401-411.
- 10. Y. Wang, Y. Hu, D. Han, Q. Yuan, T. Cao, N. Chen, D. Zhou, H. Cong and L. Feng, *Organic Electronics*, 2019, **70**, 63-70.
- 11. M.-H. Jung, N.-M. Park and S.-Y. Lee, *Solar Energy*, 2016, **139**, 458-466.
- 12. D. Liu, Y. Li, B. Shi, X. Yao, L. Fan, S. Zhao, J. Liang, Y. Ding, C. Wei and D. Zhang, *Solar Energy*, 2017, **147**, 222-227.
- 13. M. Xu, J. Feng, Z.-J. Fan, X.-L. Ou, Z.-Y. Zhang, H.-Y. Wang and H.-B. Sun, *Solar Energy Materials and Solar Cells*, 2017, **169**, 8-12.
- 14. J. Wei, H. Li, Y. Zhao, W. Zhou, R. Fu, Y. Leprince-Wang, D. Yu and Q. Zhao, *Nano Energy*, 2016, **26**, 139-147.
- 15. S. Das, C. Wu, Z. Song, Y. Hou, R. Koch, P. Somasundaran, S. Priya, B. Barbiellini-Amidei and R. Venkatesan, *ACS applied materials & interfaces*, 2019.
- 16. K. Sun, P. Li, Y. Xia, J. Chang and J. Ouyang, *ACS applied materials & interfaces*, 2015, 7, 15314-15320.
- 17. K. Poorkazem, D. Liu and T. L. Kelly, *Journal of Materials Chemistry A*, 2015, **3**, 9241-9248.
- C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. M. Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin and H. J. Bolink, *Energy & Environmental Science*, 2014, 7, 994-997.
- M. Dianetti, F. Di Giacomo, G. Polino, C. Ciceroni, A. Liscio, A. D'Epifanio, S. Licoccia, T. Brown, A. Di Carlo and F. Brunetti, *Solar Energy Materials and Solar Cells*, 2015, 140, 150-157.

- 20. W. Nie, J.-C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan and J. Even, *Nature communications*, 2016, 7, 11574.
- 21. L. Chen, X. Xie, Z. Liu and E.-C. Lee, *Journal of Materials Chemistry A*, 2017, **5**, 6974-6980.
- 22. I. Jeon, T. Chiba, C. Delacou, Y. Guo, A. Kaskela, O. Reynaud, E. I. Kauppinen, S. Maruyama and Y. Matsuo, *Nano letters*, 2015, **15**, 6665-6671.
- 23. H. Lu, J. Sun, H. Zhang, S. Lu and W. C. Choy, *Nanoscale*, 2016, **8**, 5946-5953.
- 24. J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H. S. Jung and M. Choi, *Energy & Environmental Science*, 2017, **10**, 337-345.
- 25. F. Qin, J. Tong, R. Ge, B. Luo, F. Jiang, T. Liu, Y. Jiang, Z. Xu, L. Mao and W. Meng, *Journal of Materials Chemistry A*, 2016, **4**, 14017-14024.
- 26. Y. Xue, Y. Li, J. Zhang, Z. Liu and Y. Zhao, Science China Chemistry, 2018, 61, 765-786.
- 27. M. Park, H. J. Kim, I. Jeong, J. Lee, H. Lee, H. J. Son, D. E. Kim and M. J. Ko, *Advanced Energy Materials*, 2015, **5**, 1501406.
- 28. S. Pisoni, F. Fu, T. Feurer, M. Makha, B. Bissig, S. Nishiwaki, A. N. Tiwari and S. Buecheler, *Journal of Materials Chemistry A*, 2017, **5**, 13639-13647.
- 29. X.-L. Ou, J. Feng, M. Xu and H.-B. Sun, Optics letters, 2017, 42, 1958-1961.
- F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri and C. Gerbaldi, *Science*, 2016, **354**, 203-206.
- 31. J. Troughton, D. Bryant, K. Wojciechowski, M. J. Carnie, H. Snaith, D. A. Worsley and T. M. Watson, *Journal of Materials Chemistry A*, 2015, **3**, 9141-9145.
- 32. H. C. Weerasinghe, Y. Dkhissi, A. D. Scully, R. A. Caruso and Y.-B. Cheng, *Nano Energy*, 2015, **18**, 118-125.
- M. Lee, Y. Jo, D. S. Kim, H. Y. Jeong and Y. Jun, *Journal of Materials Chemistry A*, 2015, 3, 14592-14597.
- 34. M. Lee, Y. Jo, D. S. Kim and Y. Jun, *Journal of Materials Chemistry A*, 2015, **3**, 4129-4133.
- 35. M. Lee, Y. Ko, B. K. Min and Y. Jun, *ChemSusChem*, 2016, 9, 31-35.
- 36. X. Wang, Z. Li, W. Xu, S. A. Kulkarni, S. K. Batabyal, S. Zhang, A. Cao and L. H. Wong, *Nano Energy*, 2015, **11**, 728-735.
- 37. L. Qiu, J. Deng, X. Lu, Z. Yang and H. Peng, *Angewandte Chemie International Edition*, 2014, **53**, 10425-10428.
- 38. Y. Xiao, G. Han, H. Zhou and J. Wu, *Rsc Advances*, 2016, **6**, 2778-2784.
- 39. S. He, L. Qiu, X. Fang, G. Guan, P. Chen, Z. Zhang and H. Peng, *Journal of Materials Chemistry A*, 2015, **3**, 9406-9410.
- 40. B. A. Nejand, P. Nazari, S. Gharibzadeh, V. Ahmadi and A. Moshaii, *Chemical Communications*, 2017, **53**, 747-750.

- 41. R. Li, X. Xiang, X. Tong, J. Zou and Q. Li, Advanced Materials, 2015, 27, 3831-3835.
- 42. L. Qiu, S. He, J. Yang, J. Deng and H. Peng, *Small*, 2016, **12**, 2419-2424.
- 43. J. Deng, L. Qiu, X. Lu, Z. Yang, G. Guan, Z. Zhang and H. Peng, *Journal of Materials Chemistry A*, 2015, **3**, 21070-21076.
- 44. L. Qiu, S. He, J. Yang, F. Jin, J. Deng, H. Sun, X. Cheng, G. Guan, X. Sun and H. Zhao, *Journal of Materials Chemistry A*, 2016, **4**, 10105-10109.
- 45. M. Lee, Y. Ko and Y. Jun, *Journal of Materials Chemistry A*, 2015, **3**, 19310-19313.
- 46. X. Wang, S. A. Kulkarni, Z. Li, W. Xu, S. K. Batabyal, S. Zhang, A. Cao and L. H. Wong, *Nanotechnology*, 2016, **27**, 20LT01.
- 47. H. Hu, K. Yan, M. Peng, X. Yu, S. Chen, B. Chen, B. Dong, X. Gao and D. Zou, *Journal of Materials Chemistry A*, 2016, **4**, 3901-3906.
- 48. H. Zhang, H. Wang, W. Chen and A. K. Y. Jen, *Advanced materials*, 2017, **29**, 1604984.
- 49. B. J. Kim, D. H. Kim, Y.-Y. Lee, H.-W. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y.-C. Joo and K. S. Hong, *Energy & Environmental Science*, 2015, **8**, 916-921.
- 50. D. Yang, R. Yang, J. Zhang, Z. Yang, S. F. Liu and C. Li, *Energy & Environmental Science*, 2015, **8**, 3208-3214.
- F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W. M. Kessels and M. Creatore, *Advanced Energy Materials*, 2015, 5, 1401808.
- 52. A. Kogo, M. Ikegami and T. Miyasaka, *Chemical Communications*, 2016, **52**, 8119-8122.
- 53. W. Qiu, U. W. Paetzold, R. Gehlhaar, V. Smirnov, H.-G. Boyen, J. G. Tait, B. Conings, W. Zhang, C. B. Nielsen and I. McCulloch, *Journal of Materials Chemistry A*, 2015, **3**, 22824-22829.
- 54. S. S. Mali, C. K. Hong, A. Inamdar, H. Im and S. E. Shim, *Nanoscale*, 2017, 9, 3095-3104.
- 55. I. Jeong, H. Jung, M. Park, J. S. Park, H. J. Son, J. Joo, J. Lee and M. J. Ko, *Nano Energy*, 2016, **28**, 380-389.
- 56. H. Yoon, S. M. Kang, J.-K. Lee and M. Choi, *Energy & Environmental Science*, 2016, **9**, 2262-2266.
- 57. V. Zardetto, F. Di Giacomo, G. Lucarelli, W. Kessels, T. Brown and M. Creatore, *Solar Energy*, 2017, **150**, 447-453.
- 58. G. Lucarelli, F. Di Giacomo, V. Zardetto, M. Creatore and T. M. Brown, *Nano Research*, 2017, **10**, 2130-2145.
- 59. H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du and T. Ma, *The Journal of Physical Chemistry C*, 2015, **119**, 4600-4605.
- 60. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix and N. Mathews, *Chemical Communications*, 2013, **49**, 11089-11091.
- 61. S. Ameen, M. S. Akhtar, H.-K. Seo, M. K. Nazeeruddin and H.-S. Shin, *The Journal of Physical Chemistry C*, 2015, **119**, 10379-10390.

- 62. D. Liu and T. L. Kelly, *Nature photonics*, 2014, **8**, 133.
- 63. J.-I. Park, J. H. Heo, S.-H. Park, K. I. Hong, H. G. Jeong, S. H. Im and H.-K. Kim, *Journal of Power Sources*, 2017, **341**, 340-347.
- 64. J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu and S. H. Im, *Journal of Materials Chemistry A*, 2016, **4**, 1572-1578.
- 65. M. M. Tavakoli, Q. Lin, S.-F. Leung, G. C. Lui, H. Lu, L. Li, B. Xiang and Z. Fan, *Nanoscale*, 2016, **8**, 4276-4283.
- 66. S. S. Shin, W. S. Yang, J. H. Noh, J. H. Suk, N. J. Jeon, J. H. Park, J. S. Kim, W. M. Seong and S. I. Seok, *Nature communications*, 2015, **6**, 7410.
- 67. M. M. Tavakoli, K.-H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li and Z. Fan, *ACS nano*, 2015, **9**, 10287-10295.
- 68. X. Liu, C.-C. Chueh, Z. Zhu, S. B. Jo, Y. Sun and A. K.-Y. Jen, *Journal of Materials Chemistry A*, 2016, **4**, 15294-15301.
- 69. S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y.-C. Joo, I. J. Park, J. H. Noh and S. I. Seok, *The journal of physical chemistry letters*, 2016, 7, 1845-1851.
- S. Ryu, J. Seo, S. S. Shin, Y. C. Kim, N. J. Jeon, J. H. Noh and S. I. Seok, *Journal of Materials Chemistry A*, 2015, 3, 3271-3275.
- 71. T. M. Schmidt, T. T. Larsen-Olsen, J. E. Carlé, D. Angmo and F. C. Krebs, *Advanced Energy Materials*, 2015, **5**, 1500569.
- 72. J. Wei, H. Li, Y. Zhao, W. Zhou, R. Fu, H. Pan and Q. Zhao, *Chemical Communications*, 2016, **52**, 10791-10794.
- 73. J. H. Kim, C.-C. Chueh, S. T. Williams and A. K.-Y. Jen, *Nanoscale*, 2015, 7, 17343-17349.
- 74. Z. Zhu, J. Q. Xu, C. C. Chueh, H. Liu, Z. a. Li, X. Li, H. Chen and A. K. Y. Jen, *Advanced Materials*, 2016, **28**, 10786-10793.
- 75. V. Zardetto, T. M. Brown, A. Reale and A. Di Carlo, *Journal of Polymer Science Part B: Polymer Physics*, 2011, **49**, 638-648.
- K. Wang, Y. Shi, L. Gao, R. Chi, K. Shi, B. Guo, L. Zhao and T. Ma, *Nano Energy*, 2017, 31, 424-431.
- 77. J. W. Jung, J.-S. Park, I. K. Han, Y. Lee, C. Park, W. Kwon and M. Park, *Journal of Materials Chemistry A*, 2017, **5**, 12158-12167.
- 78. Z. Chen, G. Yang, X. Zheng, H. Lei, C. Chen, J. Ma, H. Wang and G. Fang, *Journal of Power Sources*, 2017, **351**, 123-129.
- 79. J. Feng, Z. Yang, D. Yang, X. Ren, X. Zhu, Z. Jin, W. Zi, Q. Wei and S. F. Liu, *Nano Energy*, 2017, **36**, 1-8.
- 80. M. Park, J.-S. Park, I. K. Han and J. Y. Oh, *Journal of Materials Chemistry A*, 2016, 4, 11307-11316.

- 81. X. Xu, Q. Chen, Z. Hong, H. Zhou, Z. Liu, W.-H. Chang, P. Sun, H. Chen, N. D. Marco and M. Wang, *Nano letters*, 2015, **15**, 6514-6520.
- 82. J. Ha, H. Kim, H. Lee, K.-G. Lim, T.-W. Lee and S. Yoo, *Solar Energy Materials and Solar Cells*, 2017, **161**, 338-346.
- 83. L.-L. Gao, L.-S. Liang, X.-X. Song, B. Ding, G.-J. Yang, B. Fan, C.-X. Li and C.-J. Li, *Journal of Materials Chemistry A*, 2016, **4**, 3704-3710.
- 84. L. Li, S. Zhang, Z. Yang, E. E. S. Berthold and W. Chen, *Journal of energy chemistry*, 2018, **27**, 673-689.
- 85. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, *Nature communications*, 2013, 4, 2761.
- 86. Y.-F. Chiang, J.-Y. Jeng, M.-H. Lee, S.-R. Peng, P. Chen, T.-F. Guo, T.-C. Wen, Y.-J. Hsu and C.-M. Hsu, *Physical Chemistry Chemical Physics*, 2014, **16**, 6033-6040.
- 87. J. W. Jung, S. T. Williams and A. K.-Y. Jen, RSC Advances, 2014, 4, 62971-62977.
- Z. Yang, C. C. Chueh, F. Zuo, J. H. Kim, P. W. Liang and A. K. Y. Jen, *Advanced Energy Materials*, 2015, 5, 1500328.
- 89. Y. Chen, T. Chen and L. Dai, *Advanced Materials*, 2015, 27, 1053-1059.
- 90. Y. Chen, Y. Zhao and Z. Liang, *Chemistry of Materials*, 2015, 27, 1448-1451.
- 91. Z. Gu, L. Zuo, T. T. Larsen-Olsen, T. Ye, G. Wu, F. C. Krebs and H. Chen, *Journal of Materials Chemistry A*, 2015, **3**, 24254-24260.
- 92. K. Yao, X. Wang, Y.-x. Xu and F. Li, *Nano Energy*, 2015, 18, 165-175.
- 93. H. Zhang, J. Cheng, D. Li, F. Lin, J. Mao, C. Liang, A. K. Y. Jen, M. Grätzel and W. C. Choy, *Advanced Materials*, 2017, **29**, 1604695.
- 94. X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu and J. Shao, *ACS nano*, 2016, **10**, 3630-3636.
- 95. Z. Liu, A. Zhu, F. Cai, L. Tao, Y. Zhou, Z. Zhao, Q. Chen, Y.-B. Cheng and H. Zhou, *Journal of Materials Chemistry A*, 2017, **5**, 6597-6605.
- 96. J. Ciro, M. A. Mejía-Escobar and F. Jaramillo, Solar Energy, 2017, 150, 570-576.
- 97. H. Wu, C. Zhang, K. Ding, L. Wang, Y. Gao and J. Yang, *Organic Electronics*, 2017, 45, 302-307.
- 98. H.-G. Im, S. Jeong, J. Jin, J. Lee, D.-Y. Youn, W.-T. Koo, S.-B. Kang, H.-J. Kim, J. Jang and D. Lee, *NPG Asia Materials*, 2016, **8**, e282.
- 99. J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran, C. Piao, T. Lei, T. B. Song, W. Ke and T. Yokoyama, *Advanced Materials*, 2017, **29**, 1606964.
- 100. Y. Zhang, X. Hu, L. Chen, Z. Huang, Q. Fu, Y. Liu, L. Zhang and Y. Chen, *Organic Electronics*, 2016, **30**, 281-288.
- 101. J. W. Jo, M. S. Seo, M. Park, J. Y. Kim, J. S. Park, I. K. Han, H. Ahn, J. W. Jung, B. H. Sohn and M. J. Ko, *Advanced Functional Materials*, 2016, **26**, 4464-4471.

- 102. S. Bag and M. F. Durstock, *Nano energy*, 2016, **30**, 542-548.
- 103. J. Dagar, S. Castro-Hermosa, G. Lucarelli, F. Cacialli and T. M. Brown, *Nano Energy*, 2018, **49**, 290-299.
- M. Gao, X. Han, X. Zhan, P. Liu, Y. Shan, Y. Chen, J. Li, R. Zhang, S. Wang and Q. Zhang, Materials Letters, 2019.
- H. Tian, B. Xu, H. Chen, E. M. Johansson and G. Boschloo, *ChemSusChem*, 2014, 7, 2150-2153.
- 106. W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng and L. Han, *Energy & Environmental Science*, 2015, **8**, 629-640.
- 107. K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin and P. Chen, *Scientific reports*, 2014, 4, 4756.
- 108. Z. Liu, M. Zhang, X. Xu, L. Bu, W. Zhang, W. Li, Z. Zhao, M. Wang, Y.-B. Cheng and H. He, *Dalton Transactions*, 2015, **44**, 3967-3973.
- 109. Z. Liu, M. Zhang, X. Xu, F. Cai, H. Yuan, L. Bu, W. Li, A. Zhu, Z. Zhao and M. Wang, *Journal of Materials Chemistry A*, 2015, **3**, 24121-24127.
- 110. M.-H. Li, P.-S. Shen, K.-C. Wang, T.-F. Guo and P. Chen, *Journal of Materials Chemistry A*, 2015, **3**, 9011-9019.
- 111. W. C. Lai, K. W. Lin, Y. T. Wang, T. Y. Chiang, P. Chen and T. F. Guo, *Advanced Materials*, 2016, **28**, 3290-3297.
- 112. X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang and M. Wang, *Nano letters*, 2015, **15**, 2402-2408.
- 113. A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes and S. K. Sarkar, *The journal of physical chemistry letters*, 2014, **5**, 1748-1753.
- 114. K. Cao, Z. Zuo, J. Cui, Y. Shen, T. Moehl, S. M. Zakeeruddin, M. Grätzel and M. Wang, *Nano Energy*, 2015, **17**, 171-179.
- 115. L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song and W. Chen, *Acs Photonics*, 2014, **1**, 547-553.
- 116. J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen and Y. J. Hsu, *Advanced materials*, 2014, 26, 4107-4113.
- 117. J. Cui, F. Meng, H. Zhang, K. Cao, H. Yuan, Y. Cheng, F. Huang and M. Wang, ACS applied materials & interfaces, 2014, 6, 22862-22870.
- W.-C. Lai, K.-W. Lin, T.-F. Guo and J. Lee, *IEEE Transactions on Electron Devices*, 2015, 62, 1590-1595.
- 119. H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K.-Y. Jen and W. C. Choy, *ACS nano*, 2015, **10**, 1503-1511.
- 120. X. Yin, M. Que, Y. Xing and W. Que, *Journal of Materials Chemistry A*, 2015, **3**, 24495-24503.

- 121. J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger and A. K. Y. Jen, *Advanced materials*, 2015, **27**, 695-701.
- 122. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou and Q. Chen, *Nature nanotechnology*, 2016, **11**, 75.
- 123. J. W. Jung, C. C. Chueh and A. K. Y. Jen, Advanced materials, 2015, 27, 7874-7880.
- 124. I. J. Park, M. A. Park, D. H. Kim, G. D. Park, B. J. Kim, H. J. Son, M. J. Ko, D.-K. Lee, T. Park and H. Shin, *The Journal of Physical Chemistry C*, 2015, **119**, 27285-27290.
- 125. J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J. H. Noh and S. C. Yoon, *Advanced Materials*, 2015, **27**, 4013-4019.
- 126. W. Chen, F. Z. Liu, X. Y. Feng, A. B. Djurišić, W. K. Chan and Z. B. He, *Advanced Energy Materials*, 2017, **7**, 1700722.
- 127. B. Abdollahi Nejand, V. Ahmadi and H. R. Shahverdi, *ACS applied materials & interfaces*, 2015, 7, 21807-21818.
- 128. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful and M. Grätzel, *Science*, 2015, **350**, 944-948.
- 129. S. Yue, K. Liu, R. Xu, M. Li, M. Azam, K. Ren, J. Liu, Y. Sun, Z. Wang and D. Cao, *Energy & Environmental Science*, 2017, **10**, 2570-2578.
- 130. S. Sajid, A. M. Elseman, H. Huang, J. Ji, S. Dou, H. Jiang, X. Liu, D. Wei, P. Cui and M. Li, *Nano Energy*, 2018.
- 131. Z. Xu, T. Li, Q. Liu, F. Zhang, X. Hong, S. Xie, C. Lin, X. Liu and W. Guo, *Solar Energy Materials and Solar Cells*, 2018, **179**, 297-304.
- 132. N. Mengal, A. A. Arbab, I. A. Sahito, A. A. Memon, K. C. Sun and S. H. Jeong, *Solar Energy*, 2017, **155**, 110-120.
- 133. A. Berendjchi, R. Khajavi, A. A. Yousefi and M. E. Yazdanshenas, *Journal of cleaner production*, 2017, **149**, 521-527.
- 134. S. Hou, X. Cai, H. Wu, Z. Lv, D. Wang, Y. Fu and D. Zou, *Journal of Power Sources*, 2012, **215**, 164-169.
- 135. J. Liang, J. Yang, G. Zhang and W. Sun, *Electrochemistry Communications*, 2013, **37**, 80-83.
- I. A. Sahito, K. C. Sun, A. A. Arbab, M. B. Qadir, Y. S. Choi and S. H. Jeong, *Journal of Power Sources*, 2016, 319, 90-98.
- 137. A. Scalia, F. Bella, A. Lamberti, S. Bianco, C. Gerbaldi, E. Tresso and C. F. Pirri, *Journal of Power Sources*, 2017, **359**, 311-321.
- 138. M. Peng, X. Yu, X. Cai, Q. Yang, H. Hu, K. Yan, H. Wang, B. Dong, F. Zhu and D. Zou, *Nano Energy*, 2014, **10**, 117-124.
- 139. W. Song, H. Wang, G. Liu, M. Peng and D. Zou, *Nano Energy*, 2016, 19, 1-7.
- 140. T.-Y. Chen, Y.-J. Huang, C.-T. Li, C.-W. Kung, R. Vittal and K.-C. Ho, *Nano Energy*, 2017, **32**, 19-27.

- J. Liu, Y. Li, S. Arumugam, J. Tudor and S. Beeby, *Materials Today: Proceedings*, 2018, 5, 13753-13758.
- 142. S. Prasad, D. Devaraj, R. Boddula, S. Salla and M. S. AlSalhi, *Materials Science for Energy Technologies*, 2019.
- 143. X. Yin, X. Xie, L. Song, J. Zhai, P. Du and J. Xiong, *Applied Surface Science*, 2018, **440**, 992-1000.
- 144. G. Ding, J. Yuan, F. Jin, Y. Zhang, L. Han, X. Ling, H. Zhao and W. Ma, *Nano Energy*, 2017, **36**, 356-365.
- 145. Y. Yang, J. Ou, X. Lv, C. Meng and Y. Mai, *Solar Energy*, 2019, **180**, 57-62.
- 146. D. H. Shin, S. W. Seo, J. M. Kim, H. S. Lee and S.-H. Choi, *Journal of Alloys and Compounds*, 2018, **744**, 1-6.
- J.-W. Lee, J.-S. Yeo and S.-S. Kim, *Journal of industrial and engineering chemistry*, 2018, 59, 335-340.
- 148. Y. Wang, B. He, H. Wang, J. Xu, T. Ta, W. Li, Q. Wang, S. Yang, Y. Tang and B. Zou, *Materials Letters*, 2017, **188**, 107-110.
- 149. L. La Notte, P. Cataldi, L. Ceseracciu, I. S. Bayer, A. Athanassiou, S. Marras, E. Villari, F. Brunetti and A. Reale, *Materials today energy*, 2018, 7, 105-112.
- 150. J. H. Seo, H.-D. Um, A. Shukla, I. Hwang, J. Park, Y.-C. Kang, C. S. Kim, M. Song and K. Seo, *Nano Energy*, 2015, **16**, 122-129.
- 151. B. Lin, L. Zhang, H. Zhao, X. Xu, K. Zhou, S. Zhang, L. Gou, B. Fan, L. Zhang and H. Yan, *Nano Energy*, 2019, **59**, 277-284.
- 152. R. Ma, J. Feng, D. Yin and H.-B. Sun, Organic Electronics, 2017, 43, 77-81.
- 153. Y.-T. Hsieh, J.-Y. Chen, C.-C. Shih, C.-C. Chueh and W.-C. Chen, *Organic Electronics*, 2018, **53**, 339-345.
- 154. S. Lu, J. Lin, K. Liu, S. Yue, K. Ren, F. Tan, Z. Wang, P. Jin, S. Qu and Z. Wang, *Acta Materialia*, 2017, **130**, 208-214.
- 155. X. Fan, X. Zhang, N. Zhang, L. Cheng, J. Du and C. Tao, *Electrochimica Acta*, 2015, **161**, 358-363.
- 156. I. Hussain, A. R. Chowdhury, J. Jaksik, G. Grissom, A. Touhami, E. E. Ibrahim, M. Schauer, O. Okoli and M. J. Uddin, *Applied Surface Science*, 2019, **478**, 327-333.
- 157. L. Zhang, L. Song, Q. Tian, X. Kuang, J. Hu, J. Liu, J. Yang and Z. Chen, *Nano Energy*, 2012, **1**, 769-776.
- 158. L. Chu, J. Su, W. Ahmad, N. Liu, L. Li and Y. Gao, *Materials Research Bulletin*, 2015, **66**, 244-248.
- 159. G. Kapil, S. S. Pandey, Y. Ogomi, T. Ma and S. Hayase, *Organic Electronics*, 2014, 15, 3399-3405.
- 160. L. Kong, Y. Bao, W. Guo, L. Cheng, J. Du, R. Liu, Y. Wang, X. Fan and C. Tao, *Applied Surface Science*, 2016, **363**, 323-327.

- 161. X. Cai, S. Hou, H. Wu, Z. Lv, Y. Fu, D. Wang, C. Zhang, H. Kafafy, Z. Chu and D. Zou, *Physical Chemistry Chemical Physics*, 2012, **14**, 125-130.
- 162. T. Chen, L. Qiu, Z. Cai, F. Gong, Z. Yang, Z. Wang and H. Peng, *Nano letters*, 2012, **12**, 2568-2572.
- 163. L. Chen, Y. Zhou, H. Dai, T. Yu, J. Liu and Z. Zou, Nano Energy, 2015, 11, 697-703.
- 164. J. Liang, G. Zhang, W. Sun and P. Dong, *Nano Energy*, 2015, **12**, 501-509.