Blue Energy Fuels: Converting Ocean Wave Energy to Carbon-Based Liquid Fuels via CO₂ Reduction

Siu-Fung Leung¹, Hui-Chun Fu¹, Maolin Zhang¹, Ali H. Hassan¹, Tao Jiang², Khaled N. Salama¹, Zhong Lin Wang,³ and Jr-Hau He^{1,4*}

¹Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.

²CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.

³School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA

⁴Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China

*Corresponding author e-mail: jrhau.he@kaust.edu.sa

Supplementary information

Calculation about the energy generated by CO₂RR system based on 1 km² TENGs

Maximum daily production of formic acid in this work by TENGs with area of 0.04 m²: 2.798 µmol

Daily production of formic acid by TENGs with area of 1 km²: 69.95 mol

(Eppinger and Huang, 2017)Energy density of formic acid: 1.77 kWh/ L, Density of formic acid: 1.22 g/ mL, Molar mass of formic acid: 46.02538 g.

Energy density of formic acid produced daily by TENGs with area of 1 km²= 69.95 mol * 46.02538 g /1.22 g /1000 * 1.77 kWh = 4.67 kWh

²2015 World population: 7.358 x 10⁹, 2015 global energy consumption: 21.78 x 10¹² kWh

The daily energy consumption per capita in the world = $21.78 \times 10^{12} / 7.358 \times 10^{9} / 365 = 8.315$ KWh Percentage: (Energy density of formic acid produced daily by TENGs with area of 1 km^2) / (The daily energy consumption per capita in the world) = 4.67 / 8.315 = 56 %

Figure S1. Detailed schematic diagram of the wave energy-driven CO₂RR system

Figure S2. Optical images of the (a) spherical TENGs with the charge storage circuit board, electrochemical cell for (b) OER and (c) CO₂RR.

Figure S3. Self-discharge characteristic of the 0.01 F supercapacitor after charged to 2.4 V.

FE (HCOOH)	Mean (%)	Standard deviation (%)
V _{dis} : 3.9 V	76	6.245
V _{dis} : 2.9 V	96	3.606
V_{dis} : 2.4 V	99.67	3.055

Table S1. The statistics of the $\ensuremath{\text{FE}_{\text{HCOOH}}}$ by the three discharge voltages

	Mechanical Energy Input to TENG (J/ cycle)	Energy Stored into Capacitor (mJ/ cycle)	Energy Converted in Chemical Product (mJ/ cycle)	Average KE in on complete cvcle =
V_{dis} : 3.9 V	96.90	58	40.02	1/4 m ω²a²
V_{dis} : 2.9 V	48.45	24	23.28	
V_{dis} : 2.4 V	24.23	10.75	10.75	

one

Table S2. Energies at different stages in the conversion process

Reference

• Eppinger, J., and Huang, K.W. (2017). Formic Acid as a Hydrogen Energy Carrier. ACS Energy Lett 2, 188-195.