SnO₂ Nanoparticles Anchored on Carbon Foam as Freestanding Anode for High Performance Potassium-Ion Batteries

Hailong Qiu, Lina Zhao, Xiaoxiao Huang, Muhammad Asif, Tianyu Tang, Wei Li, Teng Zhang, Tong Shen, Yanglong Hou*

Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD),

Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-

ESAT),

Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

Corresponding Author

* Email: hou@pku.edu.cn

Figure S1. XPS survey spectra of SnO₂@CF.

Figure S2. (a) XRD patterns and (b) Raman spectra of SnO₂@CF. The high-resolution (c) N 1s XPS spectra and (d) N₂ adsorption and desorption isotherms of CF.

Figure S3. Ex-situ XPS of SnO₂@CF for K storage at different charge/discharge states in the first cycle, Sn 3d: (a) discharge to 0.6 V, (b) discharge to 0.01 V, (c) charge to 0.8 V and (d) charge to 3 V.

Figure S4. HRTEM images of SnO₂@CF electrode materials observed (a) at fully discharged and (b) at fully charged states.

Figure S5. Galvanostatic charge and discharge curves at 0.1 A g⁻¹ for the initial three cycles.

Figure S6. Cycle stability of SnO₂@CF for K ions storage at 2 A g⁻¹.

Figure S7. (a) XRD patterns, (b) Raman spectra and (c) SEM image of commercial SnO₂.

Figure S8. Electrochemical performances of SnO₂, (a) Galvanostatic charge and discharge curves and (b) cycle stability at 0.5 A g⁻¹ for K ions storage.

Figure S9. Electrochemical performances of CF for K ions storage, (a) Galvanostatic charge and discharge curves and (b) cycle stability at 0.1 A g⁻¹. (c) Galvanostatic charge and discharge curves and (d) Cycle stability at 0.5 A g⁻¹.

Figure S10. (a-e) SEM images of SnO₂@CF after different cycles for K ions storage. (f) Nyquist plots of SnO₂@CF after different cycles.

Figure S11. (a) SEM image of the SnO₂@CF electrode after cycling. (b) C, (c) N, (d) Sn, (e) O and (f) k elemental mapping of the SnO₂@CF electrode after cycling.

Matarial	Capacity-	Cualo norformanao	Energy	Doforonao
Materiai	Current density	densi		Kelerence
	564.2 mAh g ⁻¹ at 0.1 A g ⁻		227.1 Wh kg ⁻¹ (0.1 A g ⁻ ¹)	
SnO ₂ @CF	1	398.8 mAh g ⁻¹ at 0.1		this work
	440.0 mAh g ⁻¹ at 0.2 A g ⁻¹	A g ⁻¹ after 150 cycles		
	371.4 mAh g ⁻¹ at 0.5 A g ⁻¹	231.7 mAh g ⁻¹ at 1 A g ⁻¹ after 400 cycles		
	307.6 mAh g ⁻¹ at 1 A g ⁻¹	136.1 mAh g ⁻¹ at 2 A		
	247.3 mAh g^{-1} at 2 A g^{-1}	g ⁻¹ after 1000 cycles		
	143.5 mAh g^{-1} at 5 A g^{-1}			
P-SGC	287.0 mAh g ⁻¹ at 0.2 A g ⁻¹	205.0 11 1 10 1	~253.2	1
	237.3 mAh g ⁻¹ at 0.5 A g ⁻¹	A g ⁻¹ after 60 cycles	(0.1 A g ⁻¹)	
	208.5 mAh g ⁻¹ at 1 A g ⁻¹)	
	270.1 mAh g ⁻¹ at 0.1 A g ⁻¹			
SnO ₂ @G @C	219.9 mAh g ⁻¹ at 0.2 A g ⁻¹ 1 159.2 mAh g ⁻¹ at 0.5 A g ⁻¹	202.06 mAh g ⁻¹ at 0.1 A g ⁻¹ after 100 cycles	~135.6 Wh kg ⁻¹ (0.1 A g ⁻	2
	1 114.8 mAh g ⁻¹ at 1 A g ⁻¹		1)	
SnO		183 mAh g ⁻¹ at 25	~75.3	
	229 mAh g ⁻¹ at 5 mA g ⁻¹	mA g ⁻¹ after 30	Wh kg ⁻¹	3
		cycles	25 mAg ⁻¹	
G@C@S	179 mAh g ⁻¹ at 0.1 A g ⁻¹	147.8 mAh g ⁻¹ at	~153.7	4

Table S1. Comparison of electrochemical performance of the SnO₂@CF anode with the previously reported SnO₂ based PIBs anodes.

nO_2	150 mAh g ⁻¹ at 0.2 A g ⁻¹	0.05 A g ⁻¹ after 85	Wh kg ⁻¹	
	129 mAh g ⁻¹ at 0.3 A g ⁻¹	cycles	(0.1 A g ⁻	
	119 mAh g ⁻¹ at 0.4 A g ⁻¹		¹)	
	472 mAh g ⁻¹ at 0.05 A g ⁻¹	351 mAh g ⁻¹ at 0.05	~188.2	
	361 mAh g ⁻¹ at 0.1 A g ⁻¹	A g ⁻¹ after 100		
SIIO ₂ @SS	292 mAh g ⁻¹ at 0.2 A g ⁻¹	cycles	(0 1 A ~-	5
IVI	195 mAh g ⁻¹ at 0.5 A g ⁻¹	128 mAh g ⁻¹ at 15 A	(0.1 A g	
	125 mAh g ⁻¹ at 1 A g ⁻¹	g ⁻¹ after 200 cycles	-)	

Notes:

The energy density is calculated based solely on the mass of the active materials.

P-SGC: phosphoric acid doped SnO₂-graphene-carbon nanofibers

SnO₂@G@C: SnO₂-graphene-carbon nanofiber

G@C@SnO₂: Dual Carbon-Confined SnO₂ Hollow Nanospheres

SnO₂@SSM: SnO₂ nanosheets grown on stainless steel mesh

Table S2. Comparison of electrochemical performance of the SnO2@CF anodewith the other state-of-the-art PIBs anodes.

Matarial	Capacity-	Cuelo norfermance	Dofononao	
wrateriai	Current density	Cycle performance	Keterence	
	564.2 mAh g ⁻¹ at 0.1 A g ⁻¹	398.8 mAh g ⁻¹ at 0.1 A		
	440.0 mAh g ⁻¹ at 0.2 A g ⁻¹	g ⁻¹ after 150 cycles		
SnO @CE	371.4 mAh g ⁻¹ at 0.5 A g ⁻¹	231.7 mAh g ⁻¹ at 1 A g ⁻¹	this work	
SIIO ₂ (<i>u</i>)CF	307.6 mAh g ⁻¹ at 1 A g ⁻¹	after 400 cycles		
	247.3 mAh g ⁻¹ at 2 A g ⁻¹	136.1 mAh g ⁻¹ at 2 A g ⁻¹		
	143.5 mAh g ⁻¹ at 5 A g ⁻¹	after 1000 cycles		
SnP _{0.94} @GO	309 mAh g ⁻¹ at 0.025 A g ⁻¹ 84 mAh g ⁻¹ at 0.5 A g ⁻¹	162 mAh g ⁻¹ at 0.1 A g ⁻¹	6	
	57 mAh g ⁻¹ at 1 A g ⁻¹	after 50 cycles		
SnS ₂ @C@rG	721.9 mAh g ⁻¹ at 0.05 A g ⁻¹	298.1 mAh g ⁻¹ at 0.5 A	7	
0	397.4 mAh g ⁻¹ at 2 A g ⁻¹	g ⁻¹ after 500 cycles	,	
	419 mAh g ⁻¹ at 0.02 A g ⁻¹	254 m A h g-l at 0.1 A g-l		
ZnSC@C@D	362 mAh g ⁻¹ at 0.05 A g ⁻¹	234 IIIAII g · at 0.1 A g ·		
CO	295 mAh g ⁻¹ at 0.1 A g ⁻¹	208 mAh gal at 0.5 A gal	8	
UU	223 mAh g ⁻¹ at 0.2 A g ⁻¹	after 200 evalue		
	162 mAh g ⁻¹ at 0.5 A g ⁻¹	alter 500 cycles		

FeS2@G@C NF	406 mAh g ⁻¹ at 0.1 A g ⁻¹ 332 mAh g ⁻¹ at 0.2 A g ⁻¹ 243 mAh g ⁻¹ at 0.5 A g ⁻¹ 171 mAh g ⁻¹ at 1 A g ⁻¹	120 mAh g ⁻¹ at 1 A g ⁻¹ after 680 cycles	9
CoS@C	486.7 mAh g ⁻¹ at 0.1 A g ⁻¹ 381.9 mAh g ⁻¹ at 0.2 A g ⁻¹ 306.7 mAh g ⁻¹ at 0.4 A g ⁻¹ 244.8 mAh g ⁻¹ at 0.8 A g ⁻¹ 201.6 mAh g ⁻¹ at 1.6 A g ⁻¹	401.2 mAh g ⁻¹ at 0.1 A g ⁻¹ after 100 cycles	10
MoS ₂ @NC	258 mAh g ⁻¹ at 0.1 A g ⁻¹ 238 mAh g ⁻¹ at 0.2 A g ⁻¹ 204 mAh g ⁻¹ at 0.5 A g ⁻¹ 171 mAh g ⁻¹ at 1 A g ⁻¹	212 mAh g ⁻¹ at 0.1 A g ⁻¹ after 100 cycles	11
TiNb ₂ O ₆ @M oS _{2@} C	420 mAh g ⁻¹ at 0.1 A g ⁻¹ 373 mAh g ⁻¹ at 0.2 A g ⁻¹ 309 mAh g ⁻¹ at 0.5 A g ⁻¹ 233 mAh g ⁻¹ at 1 A g ⁻¹	174 mAh g ⁻¹ at 1 A g ⁻¹ after 300 cycles	12
MoSe ₂ @MXe ne@C	350 mAh g ⁻¹ at 0.1 A g ⁻¹ 324 mAh g ⁻¹ at 0.2 A g ⁻¹ 294 mAh g ⁻¹ at 0.5 A g ⁻¹ 270 mAh g ⁻¹ at 1 A g ⁻¹	355 mAh g ⁻¹ at 0.2 A g ⁻¹ after 100 cycles 317 mAh g ⁻¹ at 1 A g ⁻¹ after 300 cycles	13
VSe ₂	374 mAh g ⁻¹ at 0.1 A g ⁻¹ 350 mAh g ⁻¹ at 0.2 A g ⁻¹ 334 mAh g ⁻¹ at 0.5 A g ⁻¹ 269 mAh g ⁻¹ at 1 A g ⁻¹	335 mAh g ⁻¹ at 0.2 A g ⁻¹ after 200 cycles	14
ReSe ₂ @G@ CNFs	254 mAh g ⁻¹ at 0.1 A g ⁻¹ 157 mAh g ⁻¹ at 2 A g ⁻¹	230 mAh g ⁻¹ at 0.2 A g ⁻¹ after 200 cycles	15
VN@QDS@	261mAh g ⁻¹ at 0.1 A g ⁻¹	228 mAh g ⁻¹ at 0.1 A g ⁻¹	16

СМ	215 mAh g ⁻¹ at 0.5 A g ⁻¹	after 100 cycles	
	187 mAh g ⁻¹ at 1 A g ⁻¹	215 mAh g ⁻¹ at 0.5 A g ⁻¹	
	152 mAh g ⁻¹ at 2 A g ⁻¹	after500 cycles	
V ₂ O ₃ @PNCN	240 mAh g ⁻¹ at 0.05 A g ⁻¹	\sim 215 mAh g ⁻¹ at 0.05 A	17
Fs	134 mAh g ⁻¹ at 1 A g ⁻¹	g ⁻¹ after 500 cycles	
	208.5 mAh g ⁻¹ at 0.2 A g ⁻¹		
T:O @C	180.1 mAh g ⁻¹ at 0.4 A g ⁻¹	132.8 mAh g ⁻¹ at 0.5 A	18
$\Pi O_2(\underline{u})C$	114.6 mAh g ⁻¹ at 1 A g ⁻¹	g ⁻¹ after 1200 cycles	10
	97.3 mAh g ⁻¹ at 2 A g ⁻¹		
	281.8 mAh g ⁻¹ at 0.05 A g ⁻¹	218.9 mAh g ⁻¹ at 0.05 A	
MaQ @rCQ	240.3 mAh g ⁻¹ at 0.1 A g ⁻¹	g ⁻¹ after 200 cycles	19
M0O2@fGO	214.1 mAh g ⁻¹ at 0.2 A g ⁻¹	104.2 mAh g ⁻¹ at 0.5 A	19
	$176.4 \text{ mAh g}^{-1} \text{ at } 0.5 \text{ A g}^{-1}$	g ⁻¹ after 500 cycles	
Nb ₂ O _{5-x} @rG	111 mAh g ⁻¹ at 1 A g ⁻¹	81 mAh g ⁻¹ at 1.5 A g ⁻¹	20
0	73 mAh g ⁻¹ at 3 A g ⁻¹	after 3500 cycles	20
	201 mAh g ⁻¹ at 0.1 A g ⁻¹		
	156 mAh g ⁻¹ at 0.2 A g ⁻¹	205 mAh g ⁻¹ at 0.1 A g ⁻¹	21
FeP@CNBs	101 mAh g ⁻¹ at 0.5 A g ⁻¹ after 300 cycles		21
	65 mAh g ⁻¹ at 1 A g ⁻¹		
	745 mAh g ⁻¹ at 0.1 A g ⁻¹		
P@N-	689 mAh g ⁻¹ at 0.3 A g ⁻¹	465 mAh g ⁻¹ at 2 A g ⁻¹	22
PHCNFs	PHCNFs $651 \text{ mAh g}^{-1} \text{ at } 0.5 \text{ A g}^{-1}$ after 800 cycles		
	613 mAh g ⁻¹ at 1 A g ⁻¹		
Bi	398.4 mAh g ⁻¹ at 0.02 A g ⁻¹	322.7 mAh g ⁻¹ at 0.8 A g ⁻¹ after 300 cycles	23

MXene@Sb	503.84 mAh g ⁻¹ at 0.1 A g ⁻¹ 459.98 mAh g ⁻¹ at 0.2 A g ⁻¹ 393.58 mAh g ⁻¹ at 0.3 A g ⁻¹ 335.54 mAh g ⁻¹ at 0.4 A g ⁻¹ 270.81 mAh g ⁻¹ at 0.5 A g ⁻¹	270 mAh g ⁻¹ at 0.5 A g ⁻¹ after 500 cycles	24
np-Ge	290 mAh g ⁻¹ at 0.02 A g ⁻¹	120 mAh g ⁻¹ at 0.02 A g ⁻¹ after 400 cycles	25
NCNF	238 mAh g ⁻¹ at 0.1 A g ⁻¹ 217 mAh g ⁻¹ at 0.3 A g ⁻¹ 192 mAh g ⁻¹ at 0.5 A g ⁻¹ 172 mAh g ⁻¹ at 1 A g ⁻¹	205 mAh g ⁻¹ at 0.5 A g ⁻¹ after 1000 cycles 164 mAh g ⁻¹ at 1 A g ⁻¹ after 2000 cycles	26
NHC	266.1 mAh g ⁻¹ at 0.1 A g ⁻¹ 260.9 mAh g ⁻¹ at 0.2 A g ⁻¹ 242.6 mAh g ⁻¹ at 0.5 A g ⁻¹ 224.3 mAh g ⁻¹ at 1 A g ⁻¹	161.3 mAh g ⁻¹ at 1 A g ⁻¹ after 1600 cycles	27
SHCS	202 mAh g ⁻¹ at 1.5 A g ⁻¹ 160 mAh g ⁻¹ at 3 A g ⁻¹ 110 mAh g ⁻¹ at 5 A g ⁻¹	~284 mAh g ⁻¹ at 0.2 A g ⁻¹ after 1000 cycles	28
SOPCMs	230 mAh g ⁻¹ at 0.05 A g ⁻¹ 213 mAh g ⁻¹ at 0.2 A g ⁻¹ 176 mAh g ⁻¹ at 0.5 A g ⁻¹ 158 mAh g ⁻¹ at 1 A g ⁻¹	226.6 mAh g ⁻¹ at 0.05 A g ⁻¹ after 100 cycles 108.4 mAh g ⁻¹ at 1 A g ⁻¹ after 2000 cycles	29
ADAPTS	66 mAh g ⁻¹ at 1.55 A g ⁻¹	70 mAh g ⁻¹ at 0.155 A g ⁻¹ after 1000 cycles	30

Notes:

ZnSC@C@RGO: carbon-encapsulated ZnS subunits nanosphere@carbon nanosphere@ reduced graphene oxide networks

FeS2@G@CNF: FeS2@graphene@carbon nanofibers

CoS@C: 3D amorphous carbon-encapsulated CoS@nitrogen-doped carbon nanofiber nanotube/CoS-coated carbon nanofiber (AC@CoS/NCNTs/CoS@CNFs) network MoS₂@NC: MoS₂@N-doped-C

 $TiNb_2O_6@MoS_{2@}C$: porous metallic $TiNb_2O_6$ as the core and carbon encapsulated MoS_2 nanosheets as the shell

ReSe₂@G@CNFs: ReSe₂-carbon nanofiber

VN-QDS@CM: VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets

V₂O₃@PNCNFs: V₂O₃ nanoparticles embedded in porous N-doped carbon nanofiber FeP@CNBs: yolk–shell FeP@C nanoboxes

P@N-PHCNFs: P @free-standing nitrogen-doped porous hollow carbon nanofiber

np-Ge: Nanoporous Ge

NCNF: N-doped carbon nanofibers

SHCS: sulfur-grafted hollow carbon spheres

SOPCMs: sulfur and oxygen codoped porous hard carbon microspheres

ADAPTS: azobenzene-4,4'-dicarboxylic acid potassium salts

References

- Z. Huang, Z. Chen, S. Ding, C. Chen and M. Zhang, *Nanotechnology*, 2018, 29, 375702.
- Z. Huang, Z. Chen, S. Ding, C. Chen and M. Zhang, *Materials Letters*, 2018, 219, 19-22.
- 3. M. Shimizu, R. Yatsuzuka, T. Koya, T. Yamakami and S. Arai, *ACS Applied Energy Materials*, 2018, **1**, 6865-6870.
- 4. Q. Wu, Q. Shao, Q. Li, Q. Duan, Y. Li and H. G. Wang, ACS applied materials & interfaces, 2018, 10, 15642-15651.
- 5. G. Suo, D. Li, L. Feng, X. Hou, Y. Yang and W. Wang, *Journal of Electroanalytical Chemistry*, 2019, **833**, 113-118.

- X. Zhao, W. Wang, Z. Hou, G. Wei, Y. Yu, J. Zhang and Z. Quan, *Chem Eng* J, 2019, **370**, 677-683.
- D. Li, Q. Sun, Y. Zhang, L. Chen, Z. Wang, Z. Liang, P. Si and L. Ci, ChemSusChem, 2019, 12, 1-13.
- J. Chu, W. A. Wang, J. Feng, C. Y. Lao, K. Xi, L. Xing, K. Han, Q. Li, L. Song, P. Li, X. Li and Y. Bao, *Acs Nano*, 2019, DOI: 10.1021/acsnano.9b01773.
- C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao and M. Zhang, *Small*, 2019, 15, e1804740.
- W. Miao, Y. Zhang, H. Li, Z. Zhang, L. Li, Z. Yu and W. Zhang, *Journal of Materials Chemistry A*, 2019, 7, 5504-5512.
- B. Jia, Q. Yu, Y. Zhao, M. Qin, W. Wang, Z. Liu, C.-Y. Lao, Y. Liu, H. Wu,
 Z. Zhang and X. Qu, *Adv Funct Mater*, 2018, 28, 1803409.
- 12. L. Xing, Q. Yu, B. Jiang, J. Chu, C.Y. Lao, M. Wang, K. Han, Z. Liu, Y. Bao and W. Wang, *Journal of Materials Chemistry A*, 2019, **7**, 5760-5768.
- 13. H. Huang, J. Cui, G. Liu, R. Bi and L. Zhang, Acs Nano, 2019, 13, 3448-3456.
- C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin, K. Wang, Y. Zhang, Y. Yang, W. Wang, J. Li and S. Guo, *Adv Mater*, 2018, **30**, e1800036.
- 15. Y. Liao, C. Chen, D. Yin, Y. Cai, R. He and M. Zhang, *Nano-Micro Letters*, 2019, **11**.
- H. Wu, Q. Yu, C.Y. Lao, M. Qin, W. Wang, Z. Liu, C. Man, L. Wang, B. Jia and X. Qu, *Energy Storage Materials*, 2019, 18, 43-50.
- 17. T. Jin, H. Li, Y. Li, L. Jiao and J. Chen, *Nano Energy*, 2018, **50**, 462-467.
- Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu, G. Wang, T. Liu, J. Hu and M. Liu, *Nano Energy*, 2019, **59**, 582-590.
- C. Liu, S. Luo, H. Huang, Y. Zhai and Z. Wang, *ChemSusChem*, 2019, 12, 873-880.
- Z.Q Tong, R. Yang, S. Wu, D. Shen, T. Jiao, K. Zhang, W. Zhang and C. S. Lee, *Small*, 2019, 1901272.
- 21. F. Yang, H. Gao, J. Hao, S. Zhang, P. Li, Y. Liu, J. Chen and Z. Guo, Adv

Funct Mater, 2019, 29, 1808291.

- Y. Wu, S. Hu, R. Xu, J. Wang, Z. Peng, Q. Zhang and Y. Yu, *Nano letters*, 2019, 19, 1351-1358.
- 23. K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu, F. Li and J. Chen, *Angewandte Chemie*, 2018, **57**, 4687-4691.
- 24. Y. Tian, Y. An, S. Xiong, J. Feng and Y. Qian, *Journal of Materials Chemistry A*, 2019, 7, 9716-9725.
- Q. Yang, Z. Wang, W. Xi and G. He, *Electrochemistry Communications*, 2019, 101, 68-72.
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu and Y. Lei, *Nat Commun*, 2018, 9, 1720.
- W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang, F. Lv, K. Wang, Q. Sun and S. Guo, *Energy & Environmental Science*, 2019, 12, 1605-1612.
- J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng, C. Zhong, E. Paek, W. Hu and D. Mitlin, *Adv Mater*, 2019, 1900429.
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo and H. Yang, Advanced Energy Materials, 2018, 8, 1800171.
- Y. Liang, C. Luo, F. Wang, S. Hou, S.C. Liou, T. Qing, Q. Li, J. Zheng, C. Cui and C. Wang, *Advanced Energy Materials*, 2019, 9, 1802986.