Supporting Information

Progress and Perspectives of Halide-based Lithium Conductors for

All-Solid-State Batteries

Xiaona Li,⁺ Jianwen Liang,⁺ Xiaofei Yang, Keegan R. Adair, Changhong Wang, Feipeng Zhao, and Xueliang Sun*

Electrode	Average	Cathode		Anode			
materials	Voltage	Press	Reversible	Initial	Press	Reversible	Initial
system	(V)	Density (g	Capacity	Coulomb	Density	Capacity	Coulombic
		cm ⁻³)	(mAh g ⁻¹)	ic	(g cm ⁻³)	$(mAh g^{-1})$	Efficiency
		,		Efficienc	,		5
				у			
LCO/Li	3.95	4.2	190	97%	0.53	3860	100%
LCO/LI	5.75	(96.5wt%)	190	5770	0.00	5000	10070
		4.031					
		(90wt%)					
		3.901					
		(90wt%)		/			
Li rich/Li	4	2.7	300	90%	0.53	3860	100%
		(96.5wt%) 2.6285					
		2.0283 (90wt%)					
		2.5735					
		(90wt%)					
NMC811/	3.8	3.5	210	90%	0.53	3860	100%
Li		(96.5wt%)					
		3.3765					
		(90wt%)					
		3.2815					
S/Li	2	(90wt%) 0.8609	1336	100%	0.53	3860	100%
5/L1	Z	0.8609 (70wt%)	1330	100%	0.55	3800	100%
		0.7077					
		(60wt%)					
		0.6007					
		(50wt%)					

Table S1. Parameters of the selected electrode systems.

The reversible capacity of S cathode is 80% of its theoretical capacity. 15% porosity is considered to moderate volume change. The mass ratio of S: PVDF: Super P = x%: 2(1-x%)/3 : (1-x%)/3. The density of PVDF and Super P is 0.8 g cm⁻³ and 0.16 g cm⁻³, respectively.

Electrolyte	Density (g cm ⁻³)	
LGPS	2.05	
Li ₃ InCl ₆	2.59	
LLZO	5.07	
PEO	1.24	
Li ₃ ErCl ₆	3.07	
Li ₃ ScCl ₆	2.18	

Table S2. Parameters of the selected SSE systems.

Table S3. Typical technological parameters of an NMC811/Li pouch cell with a fixed size of 138 mm \times 81.8 mm \times 7.13 mm.

Component of Cell	Parameter	Value
Cathode	Material	NMC811
	Reversible capacity (mAh	210
	g ⁻¹)	
	Initial Coulombic	90
	efficiency (%)	
	Unilateral areal density	22.925
	(mg cm ⁻² each side of Al)	
	Active material ratio (%)	96.5
	Press density (g cm ⁻³)	3.5
	Unilateral thickness (µm)	65.5
	Thickness of Al (µm)	16
	Length (mm)	120
	Width (mm)	73
	layer	22
Anode	Material	Li
	Reversible capacity (mAh	3860
	g ⁻¹)	
	Initial Coulombic	100
	efficiency (%)	
	Unilateral areal density	2.407125
	(mg cm ⁻² each side of Cu)	
	Active material ratio (%)	100
	Press density (g cm ⁻³)	0.53
	Unilateral thickness (µm)	45.41745
	Thickness of Cu (µm)	8
	Length (mm)	123
	Width (mm)	76
	layer	23

Electrolyte	Material	Li ₃ InCl ₆
	Thickness (µm)	30
	Length (µm)	126
	Width (µm)	76
	layer	44
Sealing film	ling film Thickness (µm)	
Cell	Voltage (V)	3.8
	Capacity (Ah)	17.90658
	Mass (g)	165.879
	Volume (L)	0.0805
	Gravimetric energy	410.2084
	density (Wh kg ⁻¹)	
	Volumetric energy density	845.2811
	(Wh L ⁻¹)	

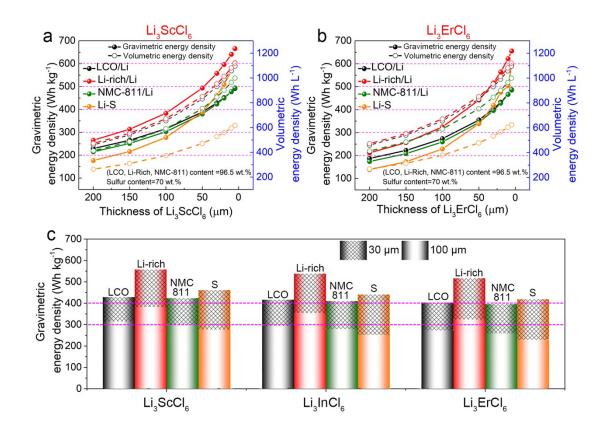


Figure S1. Gravimetric/volumetric energy densities of ASSLBs as a function of halide SSE thickness. (a) Li_3ScCl_6 and (b) Li_3ErCl_6 . (c) The gravimetric energy densities of ASSLBs based on two representative thicknesses (30 µm and 100 µm) of SSE; the black, red, green, and yellow colors refer to LCO, Li-rich, NMC811, and S cathodes, respectively. The weight percentage of

the active materials is 96.5 wt% for LCO, Li-rich, and NMC-811 cathodes and 70 wt% for S cathode. The calculation details are provided in the Supplemental Information.

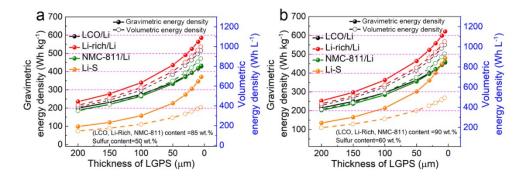


Figure S2. Gravimetric/volumetric energy densities of ASSLBs as a function of LGPS SSE thickness. (a) The weight percentage of the active materials is 85 wt% for LCO, Li-rich, and NMC811 cathodes and 50 wt% for S cathode, (b) the weight percentage of the active materials is 90 wt% for LCO, Li-rich, and NMC811 cathodes and 60 wt% for S cathode.

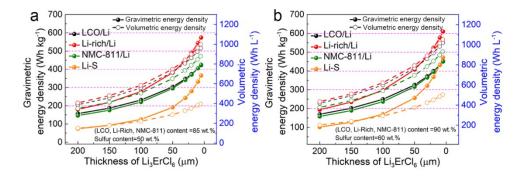


Figure S3. Gravimetric/volumetric energy densities of ASSLBs as a function of Li_3ErCl_6 SSE thickness. (a) The weight percentage of the active materials is 85 wt% for LCO, Li-rich, and NMC811 cathodes and 50 wt% for S cathode, (b) the weight percentage of the active materials is 90 wt% for LCO, Li-rich, and NMC811 cathodes and 60 wt% for S cathode.

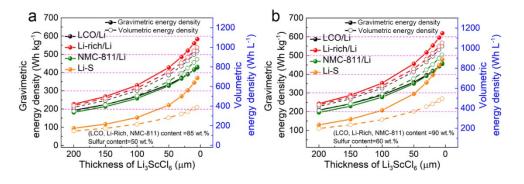


Figure S4. Gravimetric/volumetric energy densities of ASSLBs as a function of Li_3ScCl_6 SSE thickness. (a) The weight percentage of the active materials is 85 wt% for LCO, Li-rich, and NMC811 cathodes and 50 wt% for S cathode, (b) the weight percentage of the active materials is 90 wt% for LCO, Li-rich, and NMC811 cathodes and 60 wt% for S cathode.

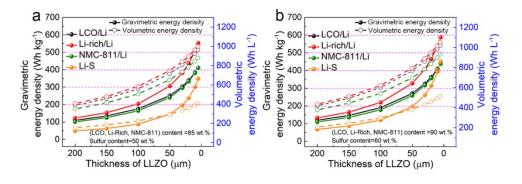


Figure S5. Gravimetric/volumetric energy densities of ASSLBs as a function of LLZO SSE thickness. (a) The weight percentage of the active materials is 85 wt% for LCO, Li-rich, and NMC811 cathodes and 50 wt% for S cathode, (b) the weight percentage of the active materials is 90 wt% for LCO, Li-rich, and NMC811 cathodes and 60 wt% for S cathode.

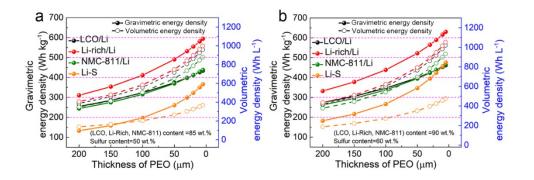


Figure S6. Gravimetric/volumetric energy densities of ASSLBs as a function of PEO SSE thickness. (a) The weight percentage of the active materials is 85 wt% for LCO, Li-rich, and

NMC811 cathodes and 50 wt% for S cathode, (b) the weight percentage of the active materials is 90 wt% for LCO, Li-rich, and NMC811 cathodes and 60 wt% for S cathode.