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S1 Bulk conductivity

In this paper, the weighted mobility ., of large-grain (>30 um) n-type Mg;Sbh, ;Bi, 5, pre-
viously reported! with an approximately 7-/2 trend, is considered as the weighted mobility
of the bulk iy buk. Given a known Seebeck coefficient of a sample, the Fermi level can be
calculated (using Eq. (11.2) in Ref. 2). Using the bulk weighted mobility and the Fermi
level, the bulk conductivity can be calculated (using Eq. (42) and (49) in Ref. 3), which is
shown as the black solid line in Fig.3 in the main text.

In this manuscript, the u,, in Fig. 1 and Fig. 6 are the total u,, calculated using measured
conductivity and Seebeck coefficient. When resistive grain boundaries exist in a sample, the
total uy, will be smaller than in a single crystal sample. For example, grain-boundary resis-

tance often dominates near room temperature, and becomes less significant as the tempera-



ture increases. In large-grain samples, p,, typically show a 7~%/2 trend, while in small-grain
samples i, is usually smaller at low temperature and gradually converges to p,, of the large-
grain samples at high temperature. As a result, a comparison of pu, between samples with
different grain sizes at different temperatures can be a first-order method to characterize

grain-boundary effect on charge transport.

S2 The thin grain-boundary approximation

In the series-circuit model, the heat conduction is determined by the thermal resistance
of the bulk grains and that of the grain boundaries. The width of the grain-boundary
resistor is relatively thin compared to that of the bulk (¢gp/lc ~ 1072 in Mg;Sby?). As a
result, for the grain-boundary thermal resistance to be significant the ratio between their
thermal conductivities kgp/ke has to be in the same order of magnitude as ¢qp/¢q which
is unlikely given the low thermal conductivity of Mg,Sb, which is within a factor of 10 of
the minimum thermal conductivity estimated from a diffusion model.® This is in contrast to
charge transport, where a small ratio of electrical conductivity ogg/og can be easily achieved

via a low local carrier concentration.

S3 Annealing effect on Seebeck

Fig. S1 shows the Seebeck coefficient before and after annealing in Mg vapor. Before an-
nealing, the Seebeck coefficient is positive and decrease with temperature, which means the
majority charge carrier is holes (p-type) and the transport is similar to intrinsic semiconduc-
tors. After annealing, the Seebeck coefficient becomes negative (n-type) and the absolute
value increases with temperature, which is the typically behavior of heavily doped semicon-

ductors and is consistent with literature data of MgsSb,.
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Figure S1: Temperature dependence of Seebeck coefficient of Te-doped Mg;Sh, (nominal
composition: Mgy sSb; :Bij 4o Te, o;) before (cyan color) and after (purple color) annealed in
Mg vapor.

S4 Transport data of other systems
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Figure S2: Weighted mobility and conventional lattice thermal conductivity of materials
synthesized with different grain sizes (Mg,Si,% PbSe alloy,”® and SnSe®19).
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Figure S3: Weighted mobility and conventional lattice thermal conductivity of materials pro-

cessed without specifically targeting their grain-boundary properties but showing a similar
trend as Mg;Sbh, (PbTe, (Hf,Zr)CoSb,!! CoSbh,,'? and Bi,Te,Se!?).



