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Supplementary Figure 1 | a-d, TEM image and the corresponding mapping images of core-

shell C@Fe3C/Fe powders. 
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Supplementary Figure 2 | N2 adsorption/desorption isotherm of the core-shellC@Fe3C/Fe 

powders. 
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Supplementary Figure 3 | a, Schematics of the porous core-shell architecture. b, TEM image 

of the C@Fe3C/Fe nanoparticle. c, XRD pattern of the carbonaceous powders after removing 

iron species from C@Fe3C/Fe powders.
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The calculations of Fe and Fe3C mass contents in C@Fe3C/Fe nanoparticles based on 

TGA analysis are as follows: 

                                                (S1)4𝐹𝑒 + 3𝑂2 = 2𝐹𝑒2𝑂3

                                     (S2)4𝐹𝑒3𝐶 + 13𝑂2 =  6𝐹𝑒2𝑂3 +  4𝐶𝑂2

                                          (S3)
𝑚𝐹𝑒 (%) =

2
3

× 𝑚𝑂(%) ×
𝑀𝐹𝑒

𝑀𝑂

                                   (S4)
𝑚𝐹𝑒2𝑂3

' (%) =
1
3

× 𝑚𝑂 (%) ×
𝑀𝐹𝑒2𝑂3

'

𝑀𝑜

                        (S5)
𝑚𝐹𝑒3𝐶(%) =

2
3

× (𝑚𝐹𝑒2𝑂3
‒ 𝑚𝐹𝑒2𝑂3

') (%) ×
𝑀𝐹𝑒3𝐶

𝑀𝐹𝑒2𝑂3

where  of 6 wt. % is the weight increase in the range of 190 oC ~ 410 oC, which 𝑚𝑂 (%)

is attributed to oxygen from the change of Fe to Fe2O3.  is the mass percentage 𝑚𝐹𝑒 (%)

of Fe nanoparticles in the C@Fe3C/Fe compound.  of 43 wt. % is the total 
𝑚𝐹𝑒2𝑂3

 (%)

mass of Fe2O3 arising from Fe and Fe3C together when the temperature is raised at 900 

oC.  is the mass percentage of Fe2O3, as calculated based on Equation (S1). 
𝑚𝐹𝑒2𝑂3

' (%)

 is the mass percentage of Fe3C in C@Fe3C/Fe nanoparticles. , , 
𝑚𝐹𝑒3𝐶 (%) 𝑀𝐹𝑒 𝑀𝑂

and  are the molar masses of Fe, O, Fe2O3 and Fe3C. As a result, the Fe 
𝑀𝐹𝑒2𝑂3

𝑀𝐹𝑒3𝐶

and Fe3C contents in the composite are 14 wt. % and 17 wt. %, respectively.
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Supplementary Figure 4 | Post-cycle EIS of batteries with 1 M LiPF6, 2 M LiPF6 and 1 M LiClO4 

electrolytes.
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Supplementary Figure 5 | Current response of C@Fe3C/Fe nanoparticles at various scan 

rates.
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Supplementary Figure 6 | Cycling performances and Columbic efficiencies of carbon anode 

with 1 M LiFP6 with a current density of 1 A g-1.
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Supplementary Figure 7 | a, XRD patterns and b, Cyclic performance of C@Fe3C anode. 
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Supplementary Figure 8 | a, CV curves (recorded at 0.5 mV/s). b, EIS curves (recorded at 

0.10 Hz to 1.0 MHz) and c, cycle performances (recorded at 1 A g-1) of the C@Fe3C/Fe anode 

with 1 M LiFP6/EC+DMC+EMC electrolyte and 1 M LiFP6/EC+DMC+EMC+DEC electrolyte.
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Supplementary Figure 9 | a, b Fe 2p and c, d Li 1s XPS spectra of the SEI on C@Fe3C/Fe 

anode after various etching times at 3 V and 0.1 V, respectively (the surface at 0 s).
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Supplementary Figure 10 | a, CV curves at 0.5 mV/s and b, Cyclic performances and 

Columbic efficiencies of commercial Fe3C and FeF3 electrodes at a current density of 1 A g-1.
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Supplementary Figure 11 | The variation of the SEI composition during the electrochemical 

reactions.
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Supplementary Figure 12 | a, b Depth profiles of the XPS spectra for the core-

shellC@Fe3C/Fe at 0.1 V and 3 V. c, d The C 1s XPS spectra of the SEI in 1 M 

LiPF6/EC+DMC+EMC electrolyte after various etching times at 0.1 V and 3 V, respectively (the 

surface at 0 s).
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Supplementary Figure 13 | Digital photos, SEM and TEM images of the post-cycle 

C@Fe3C/Fe anodes with a-c, 1 M LiPF6/EC+DMC+EMC electrolyte, d-f, 2 M 

LiPF6/EC+DMC+EMC electrolyte, g-i, 1 M LiClO4/EC+DMC+EMC electrolyte and j-l, 1 M 

LiPF6/EC+DMC+EMC+DEC electrolyte.
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Supplementary Figure 14 | a, HAADF image and corresponding b, Fe, c, F and d, O mapping 

images of C@Fe3C/Fe anode after cycling. The F mapping image is attributed to LiF, FeF2 and 

FeF3, and the O mapping image is attributed to Li2O, Li2CO3 and polycarbonate (poly(CO3)).
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Supplementary Figure 15 | Electron density map of pristine Fe3C. 
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Supplementary Figure 16 | The PDOS comparison between carbon and Fe3C.
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Supplementary Figure 17 | Electron density map of carbon on Fe3C.
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Supplementary Figure 18 | Electron density difference mapping for a, carbon and b, C@Fe3C. 

Red and blue regions indicate charge increase and decrease, respectively.
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Supplementary Figure 19 | a, Charge/discharge profiles of commercial Fe, commercial Fe3C 

and C@Fe3C/Fe electrodes. The charge/discharge capacities are normalized for comparison. 

b, Cyclic performance of commercial Fe electrode. 

 



22

Table 1

Table 1. Extra capacity phenomena of various materials and corresponding explanations 

Composition structure
Current density 

(mA )𝑔 ‒ 1 Cycles capacity
(mAh g-1) Test conditions explanations Ref. No

α-Fe2O3
Hollow 

nanofibers 60 40 1293
1 M LiPF6 
+EC/DEC

(1:1)

The formation of SEI film
Lithium storage at the metal-

Li2O phase boundary constructed 
by iron particles

1

Co3O4

Single-
crystalline 
nanobelts

100 60 980
1 M LiPF6 
+EC/DME

(1:1)

Additional lithium storage in the 
grain boundaries of Li2O and 
metal formed in the reduction 

cycle

2

Co3O4

Graphene-
anchored 

nanoparticles
50 30 935

1 M LiPF6 
+EC/DMC

(1:1)

The grain boundary area of the 
nanosized Co3O4 particles 3

MoS2 1T(octahedral) 1000 800 ~1800
1 M LiPF6 
+EC/DMC

(6:4)

The generation of Mo atoms and 
its subsequent reversible

reaction with Li to form Mo/Lix

4

CoCO3

Graphene-
coated 

mesoporous
100 100 1070

1 M LiPF6 
+EC/DMC/EMC

(1:1:1)

The reduction of Li2CO3 to LixC2 
with the formation of Li2O

5
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FeCO3
Nanosized 
cube-like 200 130 761

1 M LiPF6 
+EC/DMC

(1:1)

C4+ in CO3
2− is reduced to C0 or 

other low-valence C 6

N-doped 
graphene/
Fe-Fe3C

Nanocomposite 1000 100 607
1 M LiPF6 

+EC/DMC/EMC
(1:1:8)

The growth and decomposition 
of a polymer/gel-like film 7

Fe/Fe3C-
CNFs Nanofibers 200 70 500

1 M LiPF6 
+EC/DMC/EMC

(1:1:1)

The growth and decomposition 
of a polymer/gel-like film 8

N-
Fe/Fe3C@

C
Nanomeshes 3600 500 819

1 M LiPF6 
+EC/EMC/DEC

(4:3:3)

The growth and decomposition 
of a polymer/gel-like film 9

Fe-
Fe3C@rG

O
Nanofibers 1500 200 558

1 M LiPF6 
+EC/DMC/EMC

(1:1:1)

The growth and decomposition 
of a polymer/gel-like film 10

Fe@Fe3C/
C

Core-shell
nanocomposites 50 30 ~500

1 M LiPF6 
+EC/DMC/EMC

(1:1:1)

The growth and decomposition 
of a polymer/gel-like film 11
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