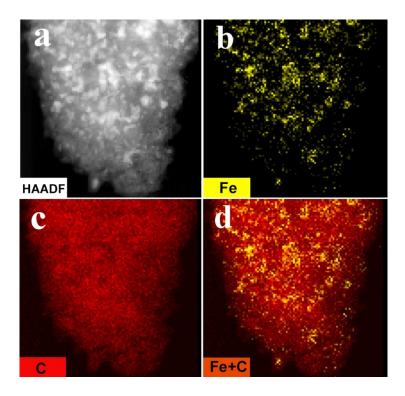
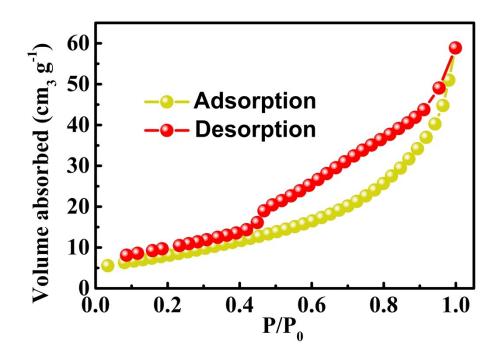
Origin of extra capacity in the solid electrolyte interphase near high-capacity iron carbide anode for Li ion batteries

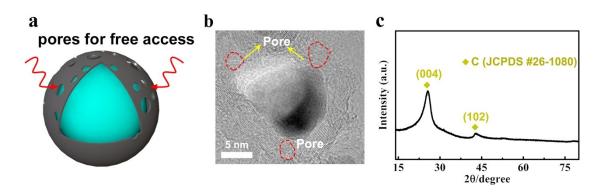

Dongjiang Chen¹, Chao Feng¹, Yupei Han¹, Bo Yu¹, Wei Chen¹, Ziqi Zhou¹, Ning Chen¹, John B. Goodenough², Weidong He^{1,3★}

¹School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China

²Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin TX 78712, USA


³National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China

E-mail: weidong.he@uestc.edu.cn



Supplementary Figure 1 | a-d, TEM image and the corresponding mapping images of core-

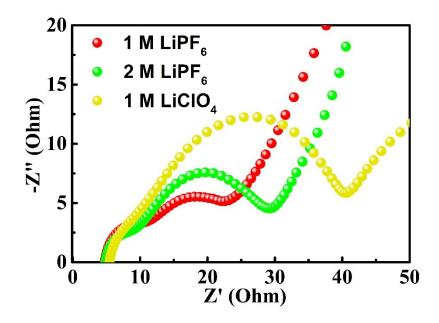
shell C@Fe₃C/Fe powders.

Supplementary Figure 2 | N_2 adsorption/desorption isotherm of the core-shellC@Fe₃C/Fe powders.

Supplementary Figure 3 | a, Schematics of the porous core-shell architecture. **b**, TEM image of the C@Fe₃C/Fe nanoparticle. **c**, XRD pattern of the carbonaceous powders after removing iron species from C@Fe₃C/Fe powders.

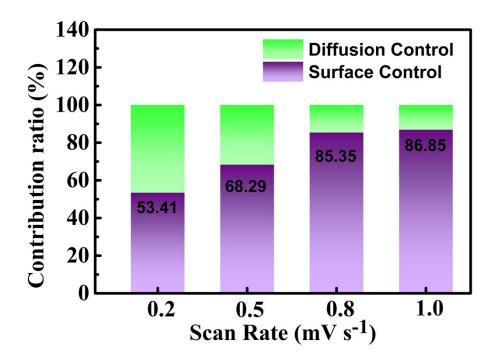
The calculations of Fe and Fe₃C mass contents in C@Fe₃C/Fe nanoparticles based on TGA analysis are as follows:

$$4Fe + 3O_2 = 2Fe_2O_3 \tag{S1}$$

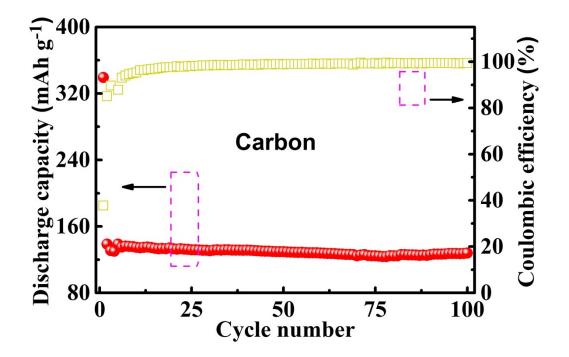

$$4Fe_3C + 13O_2 = 6Fe_2O_3 + 4CO_2 \tag{S2}$$

$$m_{Fe}(\%) = \frac{2}{3} \times m_0(\%) \times \frac{M_{Fe}}{M_0}$$
(S3)

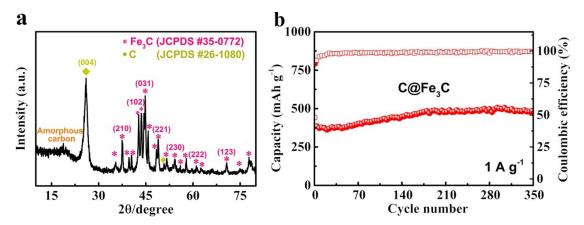
$$m_{Fe20_3}'(\%) = \frac{1}{3} \times m_0(\%) \times \frac{M_{Fe_20_3}'}{M_o}$$
(S4)

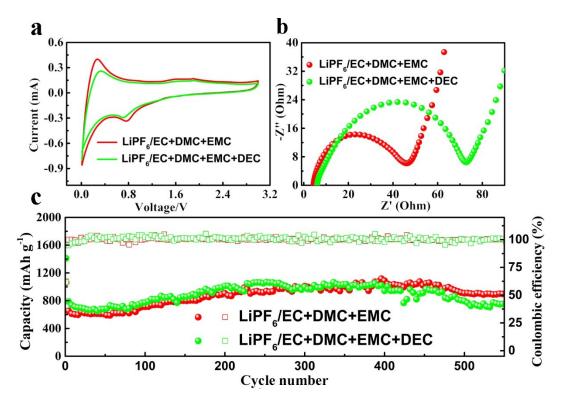

$$m_{Fe_{3C}}(\%) = \frac{2}{3} \times \left(m_{Fe_{2}0_{3}} - m_{Fe_{2}0_{3}}'\right)(\%) \times \frac{M_{Fe_{3}C}}{M_{Fe_{2}0_{3}}}$$
(S5)

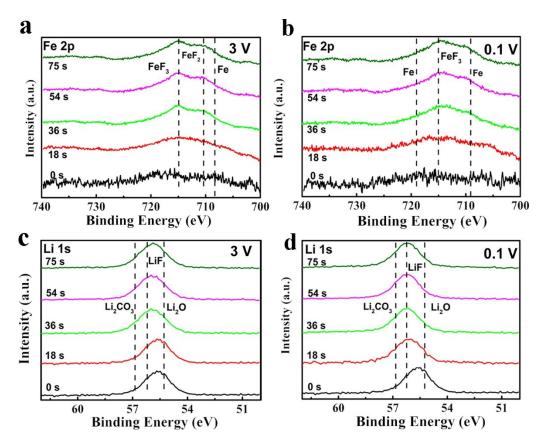
where m_0 (%) of 6 wt. % is the weight increase in the range of 190 °C ~ 410 °C, which is attributed to oxygen from the change of Fe to Fe₂O₃. m_{Fe} (%) is the mass percentage of Fe nanoparticles in the C@Fe₃C/Fe compound. $m_{Fe_2O_3}$ (%) of 43 wt. % is the total mass of Fe₂O₃ arising from Fe and Fe₃C together when the temperature is raised at 900 °C. $m_{Fe_2O_3}$ (%) is the mass percentage of Fe₂O₃, as calculated based on Equation (S1). m_{Fe_3C} (%) is the mass percentage of Fe₃C in C@Fe₃C/Fe nanoparticles. M_{Fe} , M_O , $M_{Fe_2O_3}$ and M_{Fe_3C} are the molar masses of Fe, O, Fe₂O₃ and Fe₃C. As a result, the Fe and Fe₃C contents in the composite are 14 wt. % and 17 wt. %, respectively.



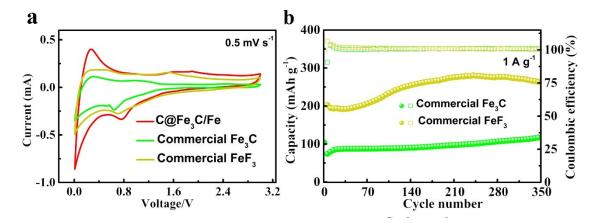
Supplementary Figure 4 | Post-cycle EIS of batteries with 1 M LiPF₆, 2 M LiPF₆ and 1 M LiClO₄


electrolytes.

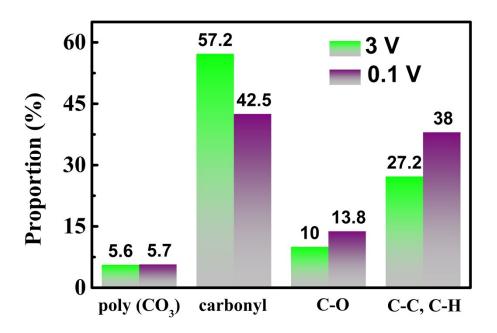

Supplementary Figure 5 | Current response of C@Fe₃C/Fe nanoparticles at various scan rates.


Supplementary Figure 6 | Cycling performances and Columbic efficiencies of carbon anode with 1 M LiFP6 with a current density of 1 A g^{-1} .

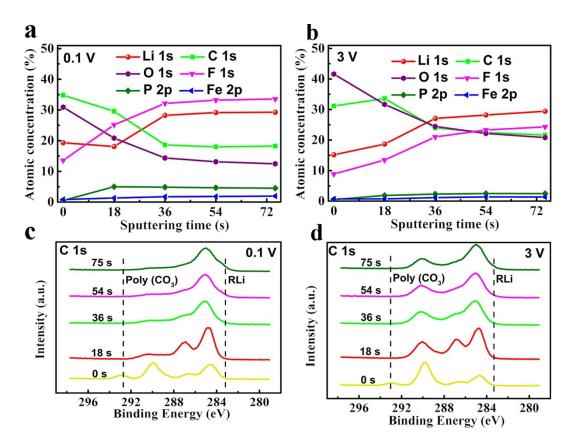
Supplementary Figure 7 | a, XRD patterns and b, Cyclic performance of C@Fe₃C anode.

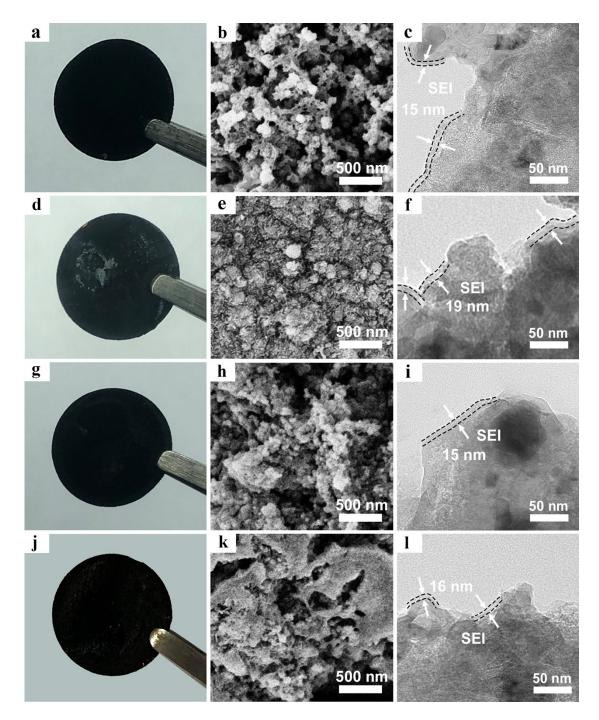


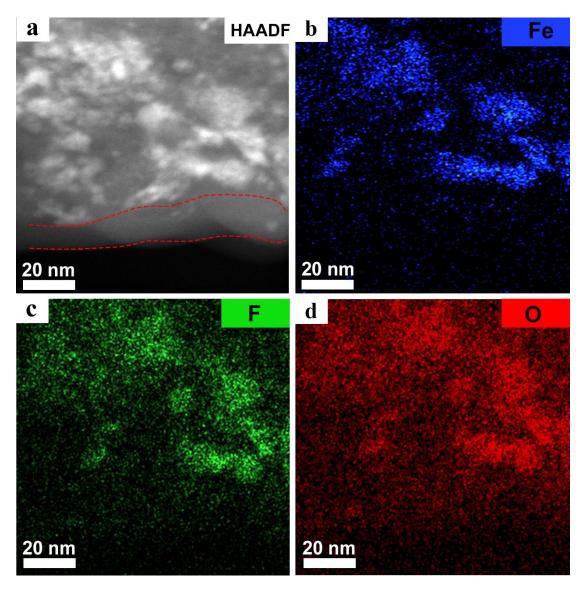
Supplementary Figure 8 | a, CV curves (recorded at 0.5 mV/s). **b**, EIS curves (recorded at 0.10 Hz to 1.0 MHz) and **c**, cycle performances (recorded at 1 A g^{-1}) of the C@Fe₃C/Fe anode with 1 M LiFP₆/EC+DMC+EMC electrolyte and 1 M LiFP₆/EC+DMC+EMC+DEC electrolyte.

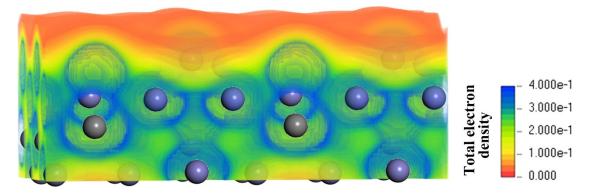


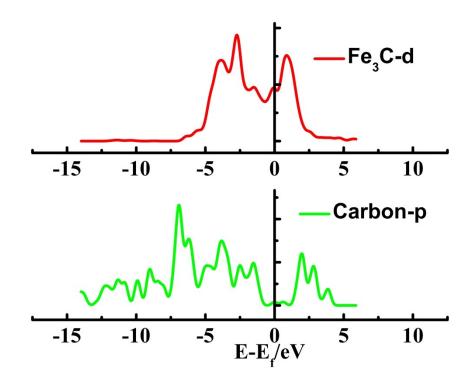
Supplementary Figure 9 | a, b Fe 2p and c, d Li 1s XPS spectra of the SEI on C@Fe₃C/Fe


anode after various etching times at 3 V and 0.1 V, respectively (the surface at 0 s).

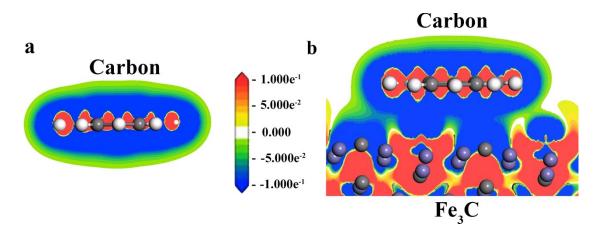

Supplementary Figure 10 | **a**, CV curves at 0.5 mV/s and **b**, Cyclic performances and Columbic efficiencies of commercial Fe_3C and FeF_3 electrodes at a current density of 1 A g⁻¹.


Supplementary Figure 11 | The variation of the SEI composition during the electrochemical reactions.

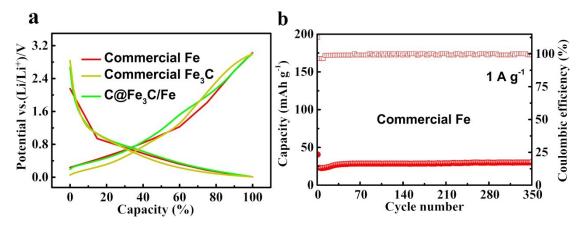

Supplementary Figure 12 | a, b Depth profiles of the XPS spectra for the coreshellC@Fe₃C/Fe at 0.1 V and 3 V. c, d The C 1s XPS spectra of the SEI in 1 M $LiPF_6/EC+DMC+EMC$ electrolyte after various etching times at 0.1 V and 3 V, respectively (the surface at 0 s).


Supplementary Figure 13 | Digital photos, SEM and TEM images of the post-cycle C@Fe₃C/Fe anodes with a-c, 1 M LiPF₆/EC+DMC+EMC electrolyte, d-f, 2 M LiPF₆/EC+DMC+EMC electrolyte, g-i, 1 M LiClO₄/EC+DMC+EMC electrolyte and j-l, 1 M LiPF₆/EC+DMC+EMC+DEC electrolyte.

Supplementary Figure 14 | a, HAADF image and corresponding **b**, Fe, **c**, F and **d**, O mapping images of C@Fe₃C/Fe anode after cycling. The F mapping image is attributed to LiF, FeF₂ and FeF₃, and the O mapping image is attributed to Li₂O, Li₂CO₃ and polycarbonate (poly(CO₃)).


Supplementary Figure 15 | Electron density map of pristine Fe_3C .

Supplementary Figure 16 | The PDOS comparison between carbon and Fe₃C.



Supplementary Figure 17 | Electron density map of carbon on Fe_3C .

Supplementary Figure 18 | Electron density difference mapping for **a**, carbon and **b**, C@Fe₃C.

Red and blue regions indicate charge increase and decrease, respectively.

Supplementary Figure 19 | a, Charge/discharge profiles of commercial Fe, commercial Fe₃C and C@Fe₃C/Fe electrodes. The charge/discharge capacities are normalized for comparison.
b, Cyclic performance of commercial Fe electrode.

Table 1

Composition	structure	Current density (mA g^{-1})	Cycles	capacity (mAh g ⁻¹)	Test conditions	explanations	Ref. No
α-Fe ₂ O ₃	Hollow nanofibers	60	40	1293	1 M LiPF_{6} +EC/DEC (1:1)	The formation of SEI film Lithium storage at the metal- Li ₂ O phase boundary constructed by iron particles	1
Co ₃ O ₄	Single- crystalline nanobelts	100	60	980	1 M LiPF_6 +EC/DME (1:1)	Additional lithium storage in the grain boundaries of Li ₂ O and metal formed in the reduction cycle	2
Co ₃ O ₄	Graphene- anchored nanoparticles	50	30	935	1 M LiPF ₆ +EC/DMC (1:1)	The grain boundary area of the nanosized Co ₃ O ₄ particles	3
MoS_2	1T(octahedral)	1000	800	~1800	1 M LiPF_{6} +EC/DMC (6:4)	The generation of Mo atoms and its subsequent reversible reaction with Li to form Mo/Li _x	4
CoCO ₃	Graphene- coated mesoporous	100	100	1070	1 M LiPF ₆ +EC/DMC/EMC (1:1:1)	The reduction of Li_2CO_3 to Li_xC_2 with the formation of Li_2O	5

Table 1. Extra capacity phenomena of various materials and corresponding explanations

FeCO ₃	Nanosized cube-like	200	130	761	1 M LiPF ₆ +EC/DMC (1:1)	C ⁴⁺ in CO ₃ ²⁻ is reduced to C ⁰ or other low-valence C	6
N-doped graphene/ Fe-Fe ₃ C	Nanocomposite	1000	100	607	1 M LiPF_{6} +EC/DMC/EMC (1:1:8)	The growth and decomposition of a polymer/gel-like film	7
Fe/Fe ₃ C- CNFs	Nanofibers	200	70	500	1 M LiPF ₆ +EC/DMC/EMC (1:1:1)	The growth and decomposition of a polymer/gel-like film	8
N- Fe/Fe ₃ C@ C	Nanomeshes	3600	500	819	1 M LiPF ₆ +EC/EMC/DEC (4:3:3)	The growth and decomposition of a polymer/gel-like film	9
Fe- Fe ₃ C@rG O	Nanofibers	1500	200	558	1 M LiPF ₆ +EC/DMC/EMC (1:1:1)	The growth and decomposition of a polymer/gel-like film	10
Fe@Fe ₃ C/	Core-shell nanocomposites	50	30	~500	1 M LiPF6 +EC/DMC/EMC (1:1:1)	The growth and decomposition of a polymer/gel-like film	11

References:

- Chaudhari, S. & Srinivasan, M. 1D hollow α-Fe₂O₃ electrospun nanofibers as high performance anode material for lithium ion batteries. *Journal of Materials Chemistry*. 22, 23049-23056 (2012).
- [2] Huang, H., Zhu, W., Tao, X., Xia, Y., Yu, Z., Fang, J., Gan, Y. & Zhang, W. Nanocrystal-constructed mesoporous single-crystalline Co₃O₄ nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Applied Materials & Interfaces 4, 5974-5980 (2012).
- [3] Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., Zhou, G., Li, F. & Cheng, H.-M. Graphene anchored with Co₃O₄ nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. *ACS Nano* 4, 3187-3194 (2010).
- [4] Wang, L., Zhang, Q., Zhu, J., Duan, X., Xu, Z., Liu, Y., Yang, H. & Lu, B. Nature of extra capacity in MoS₂ electrodes: molybdenum atoms accommodate with lithium. *Energy Storage Mater.* **16**, 37-45 (2019).
- [5] Ding, Z., Yao, B., Feng, J. & Zhang, J. Enhanced rate performance and cycling stability of a CoCO₃-polypyrrole composite for lithium ion battery anodes. *Journal of Materials Chemistry A* **1**, 11200-11209 (2013).
- [6] Zhang, C., Liu, W., Chen, D., Huang, J., Yu, X., Huang, X. & Fang, Y. One step hydrothermal synthesis of FeCO₃ cubes for high performance lithium-ion battery anodes. *Electrochimica Acta* **182**, 559-564 (2015).
- [7] Tan, Y., Zhu, K., Li, D., Bai, F., Wei, Y. & Zhang, P. N-doped graphene/Fe-Fe₃C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. *Chemical Engineering Journal.* 258, 93-100 (2014).
- [8] Li, J., Wen, W., Xu, G., Zou, M., Huang, Z. & Guan, L. Fe-added Fe₃C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance. *Electrochimica Acta* 153, 300-305 (2015).
- [9] Zhou, J., Qian, T., Yang, T., Wang, M., Guo, J. & Yan, C. Nanomeshes of highly crystalline nitrogen-doped carbon encapsulated Fe/Fe₃C electrodes as ultrafast and stable anodes for Li-ion batteries. *Journal of Materials Chemistry A* 3, 15008-15014 (2015).
- [10] Joshi, B., Lee, J.-G., Samuel, E., Jo, H. S., Kim, T.-G., Swihart, M. T., Yoon, W. Y. & Yoon, S. S. Supersonically blown reduced graphene oxide loaded Fe-Fe₃C nanofibers for lithium ion battery anodes. *Journal of Alloys and Compounds* 726, 114-120 (2017).
- [11] Su, L., Zhou, Z. & Shen, P. Core-shell Fe@Fe₃C/C nanocomposites as anode materials for Li ion batteries. *Electrochimica Acta* **87**, 180-185 (2013).