Electronic Supplementary Information

Characterization of Electrophilicity and Oxidative Potential of Atmospheric Carbonyls

Jin Y. Chen,^{a§} Huanhuan Jiang,^{b§} Stacy Jy Chen,^b Cody Cullen,^c C. M. Sabbir Ahmed,^a and Ying-

Hsuan Lin^{*ab}

^a Environmental Toxicology Graduate Program, University of California, Riverside, California

92521, United States

^b Department of Environmental Sciences, University of California, Riverside, California 92521,

United States

^c Department of Chemical Engineering, University of California, Riverside, California 92521, United States

[§]Authors contributed equally to this study

* Corresponding author

Email: ying-hsuan.lin@ucr.edu (Y.-H. L.) Tel: (951)-827-3785 Fax: (951)-827-4652

Pages: 18 Tables: 5 Figures: 2

Table of Contents

Table S1: The chemical reactivity descriptors EHOMO, ELUMO, μ , η and ω) of carbonyl compounds calculated in gas phase
Table S2: Optimized geometry of carbonyls in gas phase and in water solvent from the Gaussian 09 program.
Table S3: The nanomoles of carbonyls added to the DTT assay
Table S4. The comparisons of DTTr of carbonyls in this study with other compounds and aerosol systems reported previously. 14
Table S5. Local selectivity indexes computed for the tested α,β -unsaturated carbonyls based onthe condensed Fukui function
Fig. S1: Comparison between the calculated electrophilicity index in gas phase and the measured $\text{Log}_{10}(\text{DTT activity})$ (nmol DTT consumed per reaction incubation minute per μ g of sample). The r ² values of simple (blue) and α,β -unsaturated (red) carbonyls are 0.8048 and 0.9977, respectively.
Fig. S2: Molecular geometries showing atom labels for (A) <i>trans</i> -cinnamaldehyde, (B) citral and (C) mesityl oxide
Reference

Compound	Structure	Еномо eV	E <i>lumo</i> eV	μ eV	η eV	ω eV
Simple carbonyl						
Formaldehyde (FM)	о Н Н	-7.667	-1.746	-4.707	5.921	1.87
2-Furaldehyde (2-FA)	□ ○	-7.207	-2.155	-4.681	5.052	2.17
Benzaldehyde (BA)		-7.340	-2.176	-4.758	5.164	2.19
4-Formylbenzoic acid (4-FBA)	о	-7.632	-2.870	-5.251	4.762	2.90
2-Nitrobenzaldehyde (2-NBA)	NO ₂	-7.768	-3.303	-5.536	4.465	3.43
3-Nitrobenzaldehyde (3-NBA)	O ₂ N	-7.908	-3.323	-5.616	4.585	3.44
4-Nitrobenzaldehyde (4-NBA)	0 ₂ N-\O	-7.963	-3.565	-5.764	4.398	3.78
<u>α,β-unsaturated carbonyl</u>						
Mesityl oxide (MPO)	, o	-6.763	-1.610	-4.187	5.153	1.70
Citral (CTR)	ot	-6.706	-1.824	-4.265	4.882	1.86
trans-Cinnamaldehyde (t-CA)	° I	-6.959	-2.517	-4.738	4.442	2.53

Table S1: The chemical reactivity descriptors EHOMO, ELUMO, μ , η and ω) of carbonyl compounds calculated in gas phase.

Table S2: Optimized geometry of carbonyls in gas phase and in water solvent from the Gaussian

09 program.

Gaussian Optimized Geometry, Gas Phase:

Formaldehyde

E(RB3LYP) = -114.541577701 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	0.00000	0.52742	0.00000
0	0.00000	-0.67430	0.00000
Η	-0.00001	1.11493	0.93973
Η	-0.00001	1.11493	-0.93973

Benzaldehyde

E(RB3LYP) =-345.666239183 Hartree(Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	-1.99189	0.46358	0.00005
С	-0.53400	0.20655	0.00008
С	0.35492	1.28690	0.00001
С	1.72933	1.06367	-0.00009
С	2.21651	-0.24269	-0.00007
С	1.33257	-1.32598	0.00006
С	-0.03833	-1.10446	0.00012
0	-2.84864	-0.39249	-0.00024
Η	-2.27063	1.53915	0.00097
Η	-0.03461	2.30040	0.00004
Η	2.41747	1.90105	-0.00022
Η	3.28638	-0.41923	-0.00014
Η	1.71866	-2.33893	0.00012
Η	-0.74281	-1.92794	0.00016

<u>4-Formylbenzoic acid</u> E (RB3LYP) = -534.295211516 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	-3.23113	0.30439	-0.00003
0	-3.98513	-0.64116	0.00033
С	-1.74968	0.20387	-0.00008
С	-0.98081	1.37289	-0.00006
С	0.40626	1.29788	-0.00014
С	1.03309	0.04777	-0.00024
С	2.52354	0.01713	-0.00034
0	3.23205	0.99515	0.00035
0	3.02541	-1.24221	0.00021
С	0.26520	-1.12622	-0.00024
С	-1.11952	-1.04708	-0.00012
Η	-3.62426	1.34258	0.00036
Η	-1.47336	2.33993	0.00003
Η	1.01854	2.19080	-0.00013
Η	3.99070	-1.16232	0.00065
Η	0.76000	-2.08826	-0.00032
Η	-1.73201	-1.94077	-0.00014

<u>2-Nitrobenzaldehyde</u> E (RB3LYP) = -550.212689420 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

Ν	1.83296	-0.08103	0.03635
0	2.63301	-0.86133	-0.45962
0	2.12797	0.97566	0.58284
С	0.40030	-0.45191	-0.00568
С	-0.60112	0.52981	-0.05137
С	-0.36342	2.00300	-0.22224
0	-1.23679	2.81585	-0.02765
С	-1.93005	0.09177	-0.02279
С	-2.24238	-1.26077	0.05397
С	-1.22405	-2.21312	0.08571
С	0.10657	-1.80927	0.04920
Η	0.63290	2.31205	-0.56903
Η	-2.70753	0.84452	-0.07073
Η	-3.27943	-1.57385	0.08181
Η	-1.46182	-3.26855	0.14274
Η	0.91658	-2.52549	0.07540

3-Nitrobenzaldehyde

E(RB3LYP) = -550.224223249 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

Ν	2.30133	-0.48159	0.00001
0	2.38668	-1.70232	0.00058
0	3.25248	0.28780	-0.00071
С	0.94209	0.10894	0.00005
С	-0.15853	-0.73867	-0.00003
С	-1.43571	-0.17735	-0.00003
С	-2.62350	-1.07085	-0.00018
0	-3.76774	-0.68204	-0.00015
С	-1.59012	1.21616	0.00012
С	-0.47364	2.04368	0.00022
С	0.80806	1.49313	0.00016
Η	-0.01170	-1.81166	-0.00009
Н	-2.38897	-2.15505	-0.00023
Η	-2.59319	1.62612	0.00014
Η	-0.59255	3.12038	0.00035
Н	1.69383	2.11363	0.00018

<u>4-Nitrobenzaldehyde</u> E (RB3LYP) = -550.223245374 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

Ν	-2.52393	-0.09984	0.00002
0	-3.16777	0.94050	0.00140
0	-3.00698	-1.22348	-0.00129
С	-1.04335	0.01008	-0.00001
С	-0.46916	1.27606	-0.00048
С	0.91822	1.36848	-0.00056
С	1.70472	0.21213	-0.00009
С	3.18690	0.33573	-0.00012
0	3.94913	-0.60174	0.00029
С	1.09852	-1.05105	0.00042
С	-0.28415	-1.15900	0.00041
Η	-1.10187	2.15255	-0.00074
Η	1.39329	2.34382	-0.00099
Η	3.56628	1.37836	-0.00055
Η	1.72631	-1.93378	0.00081
Η	-0.78168	-2.11887	0.00070

Mesityl oxide

E (RB3LYP) = -309.962942241 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	-1.53337	1.34384	0.04939
С	-1.20502	-0.12162	0.00165
С	0.04081	-0.63904	-0.02994
С	1.33307	0.08906	-0.01653
С	2.56623	-0.79824	0.04634
0	1.44556	1.30389	-0.05586
С	-2.40005	-1.03805	-0.01364
Η	-2.01063	1.64096	-0.89279
Η	-2.26714	1.53506	0.84028
Η	-0.65381	1.96230	0.19919
Η	0.13259	-1.72198	-0.05680
Η	2.53706	-1.43105	0.93935
Η	2.59604	-1.46729	-0.82005
Η	3.46322	-0.18110	0.06241
Η	-3.05672	-0.79399	-0.85637
Η	-2.11766	-2.08934	-0.08670
Η	-2.99737	-0.90034	0.89480

<u>Citral</u>

E (RB3LYP) = -466.002393482 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	-2.98931	-1.66773	0.55963
С	-3.16763	-0.26054	0.04795
С	-4.54945	0.03863	-0.48046
С	-2.21477	0.68125	0.04499
С	-0.79279	0.57140	0.52159
С	0.22287	0.70312	-0.64573
С	1.66308	0.67274	-0.19056
С	2.17030	1.94664	0.43249
С	2.39320	-0.45065	-0.35563
С	3.78410	-0.65597	0.04947
0	4.38298	-1.70091	-0.12376
Η	-3.68720	-1.86781	1.38103
Η	-3.22240	-2.39239	-0.22894
Η	-1.98173	-1.87596	0.91805
Η	-5.30712	-0.11405	0.29716
Η	-4.63401	1.06562	-0.84102
Η	-4.80790	-0.63626	-1.30490
Η	-2.48069	1.65729	-0.36031

Η	-0.60316	1.36590	1.25321
Η	-0.61272	-0.37339	1.03811
Η	0.04071	-0.10638	-1.35677
Η	0.02882	1.64477	-1.17385
Η	1.52256	2.25386	1.25948
Η	3.18816	1.87850	0.81090
Η	2.13523	2.75502	-0.30652
Η	1.93998	-1.31506	-0.83405
Η	4.30003	0.19426	0.53603

<u>trans-Cinnamaldehyde</u> E (RB3LYP) = -423.083192755 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	3.35775	-0.28859	0.00013
С	1.99490	0.24280	-0.00007
С	0.93371	-0.58683	0.00054
С	-0.48549	-0.23876	0.00028
С	-1.43620	-1.27341	-0.00008
С	-2.79963	-0.99575	-0.00042
С	-3.23974	0.32608	-0.00031
С	-2.30780	1.36679	0.00014
С	-0.94735	1.08978	0.00039
0	4.36337	0.39221	-0.00064
Η	3.42717	-1.39833	0.00139
Η	1.90193	1.32380	-0.00087
Н	1.14233	-1.65628	0.00132
Η	-1.09637	-2.30393	-0.00015
Η	-3.51648	-1.80878	-0.00073
Η	-4.30096	0.54709	-0.00054
Н	-2.64645	2.39658	0.00029
Η	-0.23901	1.90956	0.00082

Gaussian Optimized Geometry, Water Solvent:

Formaldehyde E(RB3LYP) = -114.546525343 Hartree (Eh) Hartree Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	0.00000	-0.53129	0.00000
0	0.00000	0.67678	0.00000
Н	-0.00001	-1.11325	0.93844
Η	-0.00001	-1.11325	-0.93844

Benzaldehyde

 $\overline{E(RB3LYP)} = -345.189785981$ Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	-1.98644	0.46404	0.00016
С	-0.53560	0.20142	0.00015
С	0.35009	1.28710	0.00004
С	1.72528	1.06767	-0.00015
С	2.21713	-0.23785	-0.00013
С	1.33739	-1.32599	0.00008
С	-0.03440	-1.10945	0.00019
0	-2.85400	-0.39182	-0.00039
Η	-2.26320	1.53582	0.00108
Η	-0.04206	2.29889	0.00010
Н	2.41016	1.90728	-0.00031
Η	3.28733	-0.41060	-0.00025
Η	1.72762	-2.33701	0.00016
Η	-0.72850	-1.94144	0.00031

4-Formylbenzoic acid

E (RB3LYP) = -534.307733963 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	3.22644	0.30767	0.00013
0	3.98916	-0.63914	-0.00034
С	1.74987	0.19977	0.00011
С	0.98361	1.37163	0.00014
С	-0.40376	1.29749	0.00016
С	-1.03379	0.04870	0.00015
С	-2.52478	0.01394	0.00016
0	-3.23261	0.99868	-0.00044
0	-3.02308	-1.23741	0.00006
С	-0.26793	-1.12739	0.00011
С	1.11668	-1.05074	0.00003
Η	3.61699	1.34239	-0.00027
Η	1.47577	2.33797	0.00014
Η	-1.00658	2.19628	0.00019
Η	-3.99143	-1.17845	-0.00028
Η	-0.75966	-2.09065	0.00010
Η	1.71904	-1.95085	0.00001

2-Nitrobenzaldehyde

E (RB3LYP) = -550.224630179 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

Ν	1.79783	-0.25294	0.03803
0	2.54425	-1.11526	-0.40839
0	2.18437	0.79812	0.54450
С	0.34673	-0.49561	-0.01497
С	-0.55506	0.58045	-0.07126
С	-0.15941	2.00775	-0.26947
0	-0.87982	2.93103	0.04892
С	-1.91948	0.27681	-0.03930
С	-2.36143	-1.04068	0.04602
С	-1.44164	-2.08718	0.08983
С	-0.07637	-1.81676	0.05642
Η	0.80341	2.19318	-0.76569
Η	-2.62785	1.09318	-0.10283
Η	-3.42363	-1.25074	0.07128
Η	-1.78139	-3.11301	0.15776
Η	0.65437	-2.61186	0.10938

3-Nitrobenzaldehyde

E(RB3LYP) = -550.236789568 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

Ν	-2.29157	-0.48030	0.00004
0	-2.38731	-1.70321	-0.00139
0	-3.25280	0.28131	0.00155
С	-0.94042	0.10871	-0.00004
С	0.16082	-0.73908	0.00015
С	1.43662	-0.17400	0.00008
С	2.61559	-1.07146	0.00038
0	3.76822	-0.68852	0.00030
С	1.58768	1.22078	-0.00028
С	0.47055	2.04766	-0.00050
С	-0.80914	1.49480	-0.00033
Η	0.02359	-1.81255	0.00039
Н	2.37943	-2.15149	0.00067
Н	2.58610	1.64067	-0.00038
Η	0.58733	3.12384	-0.00081
Н	-1.69050	2.12057	-0.00047

<u>4-Nitrobenzaldehyde</u> E (RB3LYP) = -550.235866482 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

Ν	-2.51565	-0.09780	-0.00004
0	-3.16971	0.93918	0.00222
0	-3.01121	-1.21924	-0.00190
С	-1.04215	0.01018	-0.00006
С	-0.46684	1.27655	-0.00075
С	0.92006	1.36790	-0.00085
С	1.70378	0.20868	-0.00018
С	3.18201	0.33918	-0.00026
0	3.95081	-0.60057	0.00056
С	1.09647	-1.05458	0.00056
С	-0.28542	-1.16161	0.00060
Η	-1.09021	2.15894	-0.00125
Η	1.39396	2.34272	-0.00148
Η	3.55993	1.37763	-0.00050
Η	1.71515	-1.94299	0.00113
Η	-0.77578	-2.12443	0.00112

Mesityl oxide

E (RB3LYP) = -309.970343628 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	-1.52906	1.34092	0.11698
С	-1.20267	-0.12107	0.00213
С	0.04399	-0.64002	-0.06456
С	1.32954	0.08268	-0.03782
С	2.55762	-0.79446	0.10874
0	1.44287	1.30250	-0.13657
С	-2.39672	-1.03492	-0.03577
Η	-1.83686	1.72329	-0.86432
Η	-2.38091	1.48289	0.78831
Η	-0.68259	1.93353	0.45264
Η	0.13500	-1.72114	-0.11976
Η	2.48450	-1.40602	1.01317
Η	2.62450	-1.48578	-0.73754
Η	3.45719	-0.18165	0.14969
Η	-3.07531	-0.73526	-0.84218
Η	-2.11743	-2.07905	-0.18136
Η	-2.96716	-0.94960	0.89579

<u>Citral</u>

E (RB3LYP) = -466.012217419 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	-2.98626	-1.68734	0.49855
С	-3.16476	-0.25827	0.05068
С	-4.55161	0.06803	-0.44956
С	-2.20758	0.68042	0.07707
С	-0.78133	0.54561	0.53598
С	0.22043	0.70054	-0.64239
С	1.66137	0.67578	-0.19565
С	2.17609	1.95779	0.39628
С	2.38551	-0.45899	-0.34565
С	3.76854	-0.64851	0.05468
0	4.38147	-1.70005	-0.10344
Η	-3.68106	-1.92210	1.31330
Η	-3.22703	-2.37406	-0.32106
Η	-1.97661	-1.91283	0.84048
Η	-5.30038	-0.11565	0.32998
Η	-4.63555	1.10951	-0.76660
Η	-4.82180	-0.57297	-1.29697
Η	-2.47181	1.67353	-0.28573

Η	-0.57542	1.32150	1.28204
Η	-0.60375	-0.41396	1.02505
Η	0.03883	-0.10249	-1.36071
Η	0.01776	1.64979	-1.15095
Η	1.50865	2.30293	1.19138
Η	3.18256	1.89008	0.80301
Η	2.16791	2.73710	-0.37366
Η	1.91981	-1.32709	-0.80531
Η	4.28373	0.20673	0.52329

<u>trans-Cinnamaldehyde</u> E (RB3LYP) = -423.093761553 Hartree (Eh) Electronic state: 1-A Cartesian Coordinates (Angstroms):

С	3 34476	-0 28972	0.00011
C	1.99525	0.24948	0.00001
C	0.93263	-0.58488	0.00042
C	-0.48392	-0.23640	0.00023
Č	-1.43196	-1.27567	-0.00006
Č	-2.79616	-0.99931	-0.00033
Č	-3.23759	0.32335	-0.00023
Č	-2.30783	1.36767	0.00013
Ċ	-0.94627	1.09355	0.00022
0	4.36576	0.38663	-0.00052
H	3.41223	-1.39510	0.00097
Н	1.89813	1.33014	-0.00054
Н	1.14101	-1.65351	0.00100
Н	-1.08954	-2.30493	-0.00010
Н	-3.51216	-1.81284	-0.00059
Н	-4.29910	0.54266	-0.00040
Н	-2.64914	2.39638	0.00027
Н	-0.24093	1.91572	0.00054

nmol
6.71×10 ⁴ —3.36×10 ⁵
2.39×10^{2} - 1.20 × 10 ³
9.70×10^{3} - 4.85×10^{4}
3.26×10^{1} - 1.63 $\times 10^{2}$
6.85×10^{0} - 1.37 $\times 10^{2}$
6.48×10 ⁰ —1.30×10 ²
6.79×10^{0} - 1.36 $\times 10^{2}$
1.11×10^{2} 5.57 $\times 10^{2}$
3.78×10 ¹ —1.89×10 ²
3.53×10^3

Table S3: The nanomoles of carbonyls added to the DTT assay.

Table S4. The comparisons of DTTr of carbonyls in this study with other compounds and aerosol

systems reported previously.

Compounds or aerosols system	DTT _r (nmol/min/µg)	Reference
Pure compound		
Formaldehyde	8.50×10 ⁻⁶	This study
2-Furaldehyde	9.39×10 ⁻⁵	This study
Benzaldehyde	1.53×10 ⁻⁵	This study
4-Formylbenzoic acid	1.67×10 ⁻⁴	This study
2-Nitrobenzaldehyde	6.67×10 ⁻⁴	This study
3-Nitrobenzaldehyde	2.13×10 ⁻⁴	This study
4-Nitrobenzaldehyde	3.65×10 ⁻⁴	This study
Mesityl oxide	1.02×10 ⁻⁴	This study
Citral	1.53×10 ⁻⁴	This study
trans-Cinnamaldehyde	1.51×10 ⁻³	This study
Isoprene epoxydiol (IEPOX)	7.00±1.39×10 ⁻⁵	Kramer et al. ¹
2-Methyltetrol	4.44±0.92×10 ⁻⁵	Kramer et al. ¹
Methacrylic acid epoxide (MAE)	9.84±0.97×10 ⁻⁵	Kramer et al. ¹
2-Methylglyceric acid	2.51±0.37×10-4	Kramer et al. ¹
2-Hydroperoxy-2-methyl-but-3-en-1-ol (ISOPOOH)	4.90±2.20×10 ⁻¹	Kramer et al. ¹
Methacrolein	3.26±0.10×10 ⁻²	Jiang et al. ²
9,10-Phenanthraquinone	25.46±1.00	Jiang et al. ²
1,2-Naphthoquinone	9.07±0.29	Jiang et al. ²
1,4-Naphthoquinone	2.92±0.12	Jiang et al. ²
tert-Butyl hydroperoxide	1.17±0.19×10 ⁻²	Jiang et al. ³
Ambient PM		
Ambient PM	~10 ⁻³ -10 ⁻²	Fang et al. ⁴
Ambient PM	~ (2-6) ×10 ⁻²	Verma et al. ⁵
Primary aerosol		
Accord diesel	2.3±0.2×10 ⁻²	Cheung et al. ⁶
DPF-Accord diesel	$1.9\pm0.2\times10^{-2}$	Cheung et al. ⁶
Corolla gasoline	$1.2\pm0.1\times10^{-2}$	Cheung et al. ⁶
Golf diesel	1.8±0.3×10 ⁻²	Cheung et al. ⁶
Golf biodiesel	2.5±0.3×10 ⁻²	Cheung et al. ⁶
Wood smoke	2.5±0.1×10 ⁻²	Jiang et al. ²
<u>Secondary organic aerosol</u>		
Naphthalene SOA	$11.8 \pm 1.4 \times 10^{-2}$	McWhinney et al. ⁷
Toluene SOA	(3.7-8.2) ×10 ⁻²	Jiang et al. ^{2, 3}
1,3,5-Trimethylbenzene SOA	(1.4-2.5) ×10 ⁻²	Jiang et al. ^{2,3}
Isoprene SOA	(1.6-5.3) ×10 ⁻²	Jiang et al. ^{2,3}
α-Pinene SOA	$(0.9-1.3) \times 10^{-2}$	Jiang et al. ^{2,3}
Isoprene SOA	~10 ⁻²	Tuet et al. ⁸
α-Pinene SOA	$\sim (2-3) \times 10^{-2}$	Tuet et al. ⁸
β -carvophyllene SOA	~2×10 ⁻²	Tuet et al. ⁸
Pentadecane SOA	$\sim (1.5-2) \times 10^{-2}$	Tuet et al. ⁸
<i>m</i> -xylene SOA	$\sim (2-4) \times 10^{-2}$	Tuet et al. ⁸
Naphthalene SOA	$\sim 0.1 - 0.2$	Tuet et al. ⁸
Isoprene SOA	$2.10+0.22\times10^{-3}$	Kramer et al. ¹
Methacrolein SOA	$2.30\pm0.27\times10^{-3}$	Kramer et al. ¹
IEPOX-derived SOA	$1.79+0.16\times10^{-3}$	Kramer et al. ¹
MAE-derived SOA	3.13±0.30×10 ⁻³	Kramer et al. ¹

Table S5. Local selectivity indexes computed for the tested α,β -unsaturated carbonyls based on the condensed Fukui function using UCA-FUKUI software.⁹

α, β -Unsaturated carbonyl	Atom	f-	f+	f0	Dual-Descriptor
Citral	C ₁₀	-0.0001	0.2674	0.1336	0.2673
	C ₇	0.0000	0.2384	0.1192	0.2383
trans-Cinnamaldehyde	C ₃	0.0272	0.1893	0.1082	0.1621
	C_1	-0.018	0.1258	0.0539	0.1078
Mesityl oxide	C_4	0.0077	0.2319	0.1198	0.2242
	C ₂	0.1363	0.2248	0.1805	0.0886

Fig. S1: Comparison between the calculated electrophilicity index in gas phase and the measured $Log_{10}(DTT activity)$ (nmol DTT consumed per reaction incubation minute per µg of sample). The r^2 values of simple (blue) and α,β -unsaturated (red) carbonyls are 0.8239 and 0.9977, respectively.

Fig. S2: Molecular geometries showing atom labels for (A) citral, (B) *trans*-cinnamaldehyde and (C) mesityl oxide.

Reference

- 1. A. Kramer, W. Rattanavaraha, Z. Zhang, A. Gold, J. Surratt and Y. Lin, Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol, *Atmos. Environ.*, 2016, **130**, 211-218.
- 2. H. Jiang, M. Jang, T. Sabo-Attwood and S. E. Robinson, Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight, *Atmos. Environ.*, 2016, **131**, 382-389.
- 3. H. Jiang, M. Jang and Z. Yu, Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NO_x levels, *Atmos. Chem. Phys.*, 2017, **17**, 9965-9977.
- 4. T. Fang, V. Verma, H. Guo, L. E. King, E. S. Edgerton and R. J. Weber, A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE), *Atmos. Meas. Tech.*, 2015, **8**, 471-482.
- 5. V. Verma, T. Fang, H. Guo, L. King, J. T. Bates, R. E. Peltier, E. Edgerton, A. G. Russell and R. J. Weber, Reactive oxygen species associated with water-soluble PM_{2.5} in the southeastern United States: spatiotemporal trends and source apportionment, *Atmos. Chem. Phys.*, 2014, **14**, 12915-12930.
- K. L. Cheung, A. Polidori, L. Ntziachristos, T. Tzamkiozis, Z. Samaras, F. R. Cassee, M. Gerlofs and C. Sioutas, Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars, *Environ. Sci. Technol.*, 2009, 43, 6334-6340.
- 7. R. D. McWhinney, S. Zhou and J. P. D. Abbatt, Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning, *Atmos. Chem. Phys.*, 2013, **13**, 9731-9744.
- 8. W. Y. Tuet, Y. Chen, L. Xu, S. Fok, D. Gao, R. J. Weber and N. L. Ng, Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds, *Atmos. Chem. Phys.*, 2017, **17**, 839-853.
- 9. J. Sánchez-Márquez, D. Zorrilla, A. Sánchez-Coronilla, M. Desireé, J. Navas, C. Fernández-Lorenzo, R. Alcántara and J. Martín-Calleja, Introducing "UCA-FUKUI" software: reactivity-index calculations, *J. Mol. Model.*, 2014, **20**, 2492.