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The CompTox Chemicals Dashboard
The US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard) is one example of 
a web-based application developed with the intention of providing access to various types of data 
associated with environmental science.1 The application provides access to data associated with 
~875,000 chemical substances (May, 2019) including experimental and predicted physicochemical 
properties, environmental fate and transport data, in vivo hazard data, in vitro bioactivity data, and 
various types of exposure data. The application also provides access to a set of chemical lists 
(https://comptox.epa.gov/dashboard/chemical_lists) associated with, and generally linking to, peer-
reviewed publications or data assembled from other publicly accessible online databases (see 
examples above and further explanations below). A number of search capabilities exist, including the 
ability to search for chemicals based on chemical identifier strings or substrings based on systematic 
names, synonyms, Chemical Abstract Services (CAS) registry numbers (CASRN) and InChI Keys. 
Searching by product use and category is available so that chemicals associated with a particular 
product use can be identified (e.g. chemicals in cigarettes). Searching by gene and assay associated 
with the ToxCast and Tox21 high throughput screening programs is also available.2 The identification 
of potential toxicants via mass spectrometry is supported via advanced and batch search functions, 
including mass and formula-based searches that also take advantage of “MS-Ready” preparations of 
the data.3,4 While the details of the underlying databases and cheminformatics developments have 
been fully described elsewhere,1 updates to both the data and the functionality of the dashboard are 
on a biannual release cycle and new functionality has been introduced since the initial publication. The 
metadata and MS-ready functionality of the CompTox Chemicals Dashboard has been integrated into 
the in silico fragmentation identification approach MetFrag,3,5 to allow users access to this rich source 
of environmentally-relevant metadata within computational non-target identification efforts. This is 
available via the MetFrag web interface (https://msbi.ipb-halle.de/MetFrag/) under the CompTox 
“Local Database” options. The metadata options implemented to date include overall literature 
counts, suspect list tagging and selected predicted properties.

Compiling Neurotoxicity-relevant Suspect Lists
A number of lists of neurotoxicants were compiled for the purposes of this perspective, summarized 
in Table 1 in the main article. These include small, carefully validated lists explained extensively in the 
source publications (DNTEFFECTS,6 DNTINVIVO7 and HUMANNEUROTOX8), where few suspect hits will 
ever be found in environmental samples. The DNTPOTNEG7 list contains potential negative controls 
for neurotoxicity which, if found, should not be associated with neurotoxic effects. Two larger lists 
(NEUROTOXINS9 and LITMINEDNEURO10) are described further below. Note that here the term 
“(neuro)toxicant” is being used in the broad sense, as toxin refers to toxicants of natural origin only; 
here “neurotoxin” is only used where this was the actual word used to perform the data mining. For 
the smaller lists mentioned above, the referenced table from each publication was mapped to the 
Dashboard identifier DTXSIDs using Name and, where available, CASRN and any additional information 
(e.g. additional synonyms) to verify the match. These DTXSIDs were then used to compile the lists for 
the Chemical Lists page (https://comptox.epa.gov/dashboard/chemical_lists). 

The NEUROTOXINS list contains chemicals reported as neurotoxins that was compiled from public 
resources including ChEBI (https://www.ebi.ac.uk/chebi/), Wikipedia (from source pages 
https://en.wikipedia.org/wiki/Neurotoxin and https://en.wikipedia.org/wiki/Category:Neurotoxins), 
T3DB (http://t3db.ca/ - entries tagged as neurotoxin) and various literature resources, detailed further 
in a file deposited to Zenodo11 along with all lists mentioned in this article. 

https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard/chemical_lists
https://comptox.epa.gov/dashboard/consumer_products/chemicals?cp_cat_term=cigarettes
https://comptox.epa.gov/dashboard/chemical_lists/dnteffects
https://comptox.epa.gov/dashboard/chemical_lists/dntinvivo
https://comptox.epa.gov/dashboard/chemical_lists/humanneurotox
https://comptox.epa.gov/dashboard/chemical_lists/dntpotneg
https://comptox.epa.gov/dashboard/chemical_lists/neurotoxins
https://comptox.epa.gov/dashboard/chemical_lists/litminedneuro
https://comptox.epa.gov/dashboard/chemical_lists
https://www.ebi.ac.uk/chebi/
https://en.wikipedia.org/wiki/Neurotoxin
https://en.wikipedia.org/wiki/Category:Neurotoxins
http://t3db.ca/
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Text Mining of PubMed to Create the LITMINEDNEURO List
One of the largest sources of information describing the effect of chemicals on biological systems, 
including the nervous system, is the biomedical literature in PubMed 
(https://www.nlm.nih.gov/bsd/pubmed.html). Most PubMed articles have been annotated with terms 
from the Medical Subject Headings (MeSH) vocabulary (https://meshb.nlm.nih.gov/search). In earlier 
work, Baker and Hemminger12 reported a method to extract the MeSH terms for chemicals and for 
diseases from each PubMed MEDLINE record and store these records in a database. To identify 
chemicals annotated with, and thus potentially contributing to, neurotoxicity, this literature database 
of MeSH terms was queried to retrieve all articles in which a nervous system disease was annotated 
as being caused by a chemical by looking for the disease subheading “chemically induced”. Nervous 
system diseases were identified through a look-up in the MeSH tree 
(https://meshb.nlm.nih.gov/treeView) for terms in the family of diseases belonging to the MeSH node 
C10 (https://id.nlm.nih.gov/mesh/describe?uri=http://id.nlm.nih.gov/mesh/C10). Then, articles were 
searched for chemical MeSH terms that were the main topic of the article and annotated with a 
subheading that was either “toxicity”, “poisoning”, or “adverse effects”. To focus the list on substances 
that could be identified through small molecule mass spectrometry, several categories of substances 
were subsequently omitted: proteins, mixtures, terms identifying families of chemicals rather than 
specific chemicals, and biological factors. These steps eliminated entries such as “Particulate Matter”, 
“Contrast Media”, and “Pertussis Vaccine”. To ensure that the relationships were robust and more 
likely significant, chemicals with fewer than five articles connecting them to nervous system diseases 
were also omitted. All chemicals not yet in the Dashboard that satisfied these criteria were registered, 
to allow a complete listing. 

The output of this processing was exported to Microsoft® Excel and is included in the SI and on 
FigShare13. The CASRN and the CompTox Chemicals Dashboard substance identifiers (DTXSID) were 
included in the spreadsheet for chemicals for which this relationship was captured and associated with 
MeSH identifiers. The overview tab of this workbook contains 1,250 chemicals (1,243 unique DTXSIDs) 
and the co-annotations with 554 nervous system diseases in over 53,000 chemical – disease pairs 
(“Detail” tab). These relationships were described in 38,192 articles. A batch search of the Dashboard 
by DTXSID will return all related chemical information needed for generating suspect lists with subject-
specific reference scores for disease or effect subsets of this list. Note that MeSH terms for chemicals 
are often more general than CASRNs. For instance, one MeSH term may refer to multiple CASRNs and 
this is a key challenge to mapping literature and exact chemical data as discussed above. For example, 
the MeSH term “Propylene Glycol”  maps to six CASRNs in the MeSH dictionary (4254-14-2, 4254-15-
3, 4254-16-4, 57-55-6, 58858-91-6, 63180-48-3). The Dashboard has one record for Propylene Glycol 
(DTXSID0021206) with the CASRN 57-55-6 and lists the old deleted CASRN 4254-16-4 as a synonym (all 
synonyms listed here). The remaining CASRN belong to the R- and S- isomers, the sodium salt and the 
monohydrate, all of which match to (and would be observed as) the “MS-ready” form DTXSID0021206 
in NT-HR-MS. 

Taking advantage of the volume of data (number of occurrences) can help minimise the effects of the 
noise. Ranking the chemical list by article count is a useful method to bring the chemicals most 
commonly associated with neurological disorders to the top of the list and relegating the chemicals 
with the weakest or erroneous signals to the bottom. As mentioned above, all chemicals mentioned in 
5 articles or more were selected for the LITMINEDNEURO list.

https://www.nlm.nih.gov/bsd/pubmed.html
https://meshb.nlm.nih.gov/search
https://meshb.nlm.nih.gov/treeView
https://id.nlm.nih.gov/mesh/describe?uri=http://id.nlm.nih.gov/mesh/C10
https://meshb.nlm.nih.gov/record/ui?ui=D019946
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID201009429
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID501009430
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID501009430
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=4254-16-4
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=57-55-6
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID00974358
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID201009431
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID0021206#synonyms
https://comptox.epa.gov/dashboard/chemical_lists/litminedneuro
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Related Structures: Mapping “Chemicals” and “Substances”
Reviewing some of the lists in Table 1 via the Dashboard reveals several interesting cases where new 
cheminformatics approaches are needed and already under development to capture less well-defined 
substance information in the form of discrete chemical structures suitable for NT-HR-MS screening 
studies. Firstly, not all chemical substances have distinct chemical structure representations. Chemicals 
of unknown or variable composition, complex reaction products and biological materials (UVCBs) may 
be displayed simply as a chemical record with a name and, where available, a CASRN or also as Markush 
structure representations14. Examples relevant to potential neurotoxicants (all from the 
HUMANNEUROTOX list) include the Markush form of xylenes and the records for the poorly defined 
Metaldehyde and the generic category “Arsenic and arsenic compounds”. 

The following text includes examples taken from the lists provided in Table 1 in the main text, with 
selected structures given in Figure 1 of the main text. The “MS-ready” approach applied on the 
Dashboard, for instance, associates mixtures with their constituent chemicals, removes salts, and 
crosslinks this association in a way to retain both substance-specific and individual component 
information.3 The mixtures, components and neutralised forms of nicotine are, for example, available 
here: https://comptox.epa.gov/dashboard/dsstoxdb/mixture_search?cid=930. The individual 
components and the metadata associated with the substances can then be used in candidate ranking 
during NT-HR-MS, for instance using MetFrag3,5 shown in the top row of Figure 1. In this figure, nicotine 
is to the left in the red box; the blue boxes contain three alternative forms, with the number of active 
hit calls/number of assays in which the chemical was analyzed as part of the TOXCAST2 project, and 
the number of associated data sources. A further strategy applied is linking and displaying chemicals 
via the “related structures” tab. Examples include the display of transformation products associated 
with a chemical (e.g. Diazinon, middle row of Figure 1 and full listing here), or classes of chemicals for 
instance polychlorinated biphenyls (PCBs), see last row of Figure 1 (main text). 

At this stage the majority of related substance mappings displayed under the “related substances” tab 
are compiled manually, but the ability to enumerate Markush structure representations into their 
individual chemical structures has also been integrated into the registration database underpinning 
the Dashboard for future expansions. Automation and future-proofing these developments will be 
critical to upscaling the current approaches to high throughput NT-HR-MS data analysis. Currently, 
users can download all related structures and thus screen all (available) chemicals for that class, to get 
an overview of currently-linked information. The download file contains basic chemical information, 
the relationship definition (e.g. predecessor, Markush child) as well as selected metadata (currently 
including data sources, number of associated PubMed articles, number of associated PubChem data 
sources, % active assay results in ToxCast2 and the consumer product database (CPDAT) count15). An 
alternative approach to communicate relationships between chemicals on the Dashboard is to create 
a list containing members of a discrete class of chemicals, e.g. a list containing all PCBs 
(https://comptox.epa.gov/dashboard/chemical_lists/pcbchemicals). Identifier substring searches via 
the home page of the Dashboard may also help capture some “classes” of chemicals that are not 
strictly related in a registered chemical mixture, but may co-occur – e.g. “phthalates” or “statin” 
compounds. However, any substring search of this nature is also prone to returning non-related 
compounds for a class also. For example, searching on the substring “statin” also returns three isotopes 
of the element Astatine as well as Titanium Dioxide since one of the associated synonyms is “Hostatint 
White R 30”. In all cases, therefore, manual inspection of the search results is required. A challenge for 
typical small molecule analysis in NT-HR-MS is the presence of entries such as “Arsenic and arsenic 
containing compounds” on many lists. Specific search functionality is being developed to allow users 
to find all entries in the Dashboard that, for instance, contain specific elements and substructures. For 
now, a substring search of “arsenic” will capture 116 compounds (12 June 2019), while a search for 
Arsenic in the molecular formula gives over a thousand hits as not all arsenic containing compounds 

https://www.epa.gov/tsca-inventory/chemical-substances-unknown-or-variable-composition-complex-reaction-products-and
https://comptox.epa.gov/dashboard/chemical_lists/HUMANNEUROTOX
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID2021446&abbreviation=HUMANNEUROTOX
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID80109343&abbreviation=HUMANNEUROTOX
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID90872415&abbreviation=HUMANNEUROTOX
https://comptox.epa.gov/dashboard/dsstoxdb/mixture_search?cid=930
https://comptox.epa.gov/dashboard/chemical_lists/toxcast
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID9020407&abbreviation=HUMANNEUROTOX#related-substances
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=PCBs#related-substances
https://comptox.epa.gov/dashboard/chemical_lists/pcbchemicals
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?input_type=synonym_substring&inputs=phthalate
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?input_type=synonym_substring&inputs=statin
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID90872415&abbreviation=HUMANNEUROTOX
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID90872415&abbreviation=HUMANNEUROTOX
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?input_type=synonym_substring&inputs=arsenic
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contain arsenic in the name (e.g. Arsinous cyanide). As some organometallic compounds can be 
detected with LC coupled with HR-MS, as evidenced in the recent EPA Non-Targeted Analysis 
Collaborative Trial (ENTACT),16 this will become increasingly relevant to clarify neurotoxicity and other 
effects that may be related to the presence of metals. Computational methods for identification will 
need to be updated to be able to handle metal-containing molecules, as recently done for RMassBank17 
for use during the ENTACT, and the ability to deal with covalently bonded metals (as opposed to ionic 
salts) was considered in the preparation of MS-Ready structures.3

One of the most interesting challenges associated with capturing chemical information for NT-HR-MS 
related to neurotoxicity (or any potential health impact) is relating what we as humans consume 
relative to discrete chemical components. For instance, while toxicity testing is most commonly 
performed on a chemical such as caffeine, patients will instead report coffee (or tea or energy drink) 
consumption. Coffee, for instance, is documented to contain over 1000 chemical constituents18, which 
require a variety of analytical techniques for detection19. Nicotine is another common example where 
the chemical tested is often nicotine (or an associated salt or mixture), but patients will instead report 
e.g. smoking habits. It is well known that nicotine is not the only chemical in cigarettes that may cause 
detrimental health effects. Several thousand chemicals have been identified in cigarettes20,21, with 599 
chemicals listed as additives22. Capturing such knowledge (e.g. via cross-mapping and adding as lists or 
related substances in databases) will be increasingly important to help reconcile NT-HR-MS results in 
the future, yet expand suspect lists even further. As mentioned above, however, delving into the 
literature associated with these chemical entries will also be critical, as some documented 
neurotoxicants can indeed be associated with a neuroprotective action in the context of certain 
diseases (see discussion above). Some of the literature studies already take into account the question 
of active ingredients.23

Once these chemicals and their relationships are captured, a range of metadata can be included to 
assist in candidate prioritisation and selection for NT-HR-MS. This is demonstrated in the example 
shown in Figure 2 (main text). Candidates were exported as a MetFrag Input File (CSV) from the MS-
ready formula search for “C10H14N2” in the batch search of the CompTox Dashboard database. Many 
scoring terms can be selected; for this example the terms selected were “presence in the 
HUMANNEUROTOX list”, PubChem Data Sources and TOXCAST % Active bioassays. The resulting CSV 
was uploaded as a local CSV file and searched by formula in MetFrag  (https://msbi.ipb-
halle.de/MetFragBeta, v2.0.19) using a spectrum of nicotine taken from MassBank (EQ300804). To 
demonstrate how metadata can be used for quick prioritisation, 5 scoring terms were used in total. 
Two of these are based on experimental information, the MetFrag score, i.e. the predicted 
fragmentation assignment and the Exact Spectral Similarity score, which compares the experimental 
spectrum to all entries for exactly that substance in open libraries. The three additional terms 
described above (“presence in HUMANNEUROTOX list”, PubChem Data Sources and TOXCAST % Active 
bioassays) fall under what we refer to as “metadata” in this article. These terms indicate whether the 
substance may be of interest in the (here hypothetical) experimental context. All scores are scaled 
between 0 and 1 and added to form the final score (blue dots in Figure 2, main text). The presence of 
one candidate with a total score well above 2 indicates that for this query, a potential neurotoxicant 
of interest (in this case nicotine) matches both experimental and metadata and may be a promising hit 
for further validation. Scaled up to the hundreds of masses typically present in non-target identification 
efforts, the quick selection of top candidates with high overall scores can enable rapid prioritisation, 
even in the absence of fragmentation information, as metadata scores will still indicate possible 
candidates of interest. This can, for instance, enable the quick selection of interesting masses for 
creation of inclusion lists for re-acquisition of fragmentation data.24  Instead of taking the bulk 
PUBCHEM_DATA_SOURCES scores, as demonstrated here, it would be possible to use the chemical 
information and  specific literature counts in the excel macro included in the supplemental information 

https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID40790296
https://comptox.epa.gov/dashboard/chemical_lists/HUMANNEUROTOX
https://comptox.epa.gov/dashboard/chemical_lists/toxcast
https://msbi.ipb-halle.de/MetFragBeta
https://msbi.ipb-halle.de/MetFragBeta
https://massbank.eu/MassBank/jsp/RecordDisplay.jsp?id=EQ300804&dsn=Eawag
https://comptox.epa.gov/dashboard/chemical_lists/HUMANNEUROTOX
https://comptox.epa.gov/dashboard/chemical_lists/toxcast
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to create candidate files and scores for neurological endpoints of interest. This example is also 
presented online.25

Chemical Properties and Analytical Methods
The chemical diversity of potential neurotoxicants poses a challenge in terms of the analysis of their 
presence in different matrices. The mapping of potential neurotoxicants from public resources 
(https://comptox.epa.gov/dashboard/chemical_lists/neurotoxins) resulted in a list of over 500 
chemicals with varying physicochemical properties. Boxplots (see Figure 4) were generated using the 
predicted properties available in the Dashboard to demonstrate the diversity in these chemical 
properties. These properties included the octanol-water partition constant (log Kow), water solubility, 
vapor pressure, and boiling point, as well as properties that assist in understanding how these 
chemicals may behave in the environment (moving from source to sink) such as bioconcentration 
factor and biodegradation. 

Understanding environmental fate specifically will help guide the experimenter in deciding which 
matrices may be of importance to study, in addition to providing knowledge regarding how these 
chemicals may be absorbed, distributed, metabolised, and excreted (ADME). It is apparent from Figure 
4 that there is a huge variability in the properties of the suspected neurotoxicants and this makes 
experimental design even more challenging. The bioconcentration factor, log Kow, and water solubility 
plots show that most of the potential neurotoxicants have a higher tendency to accumulate in the 
human body in addition to a lower susceptibility to be eliminated through urine. Unless metabolised 
to form a more polar conjugate, these compounds can be expected to be present in the body and 
accumulate over time. The log Kow and water solubility can also be used to decide which analytical 
approach is most appropriate. Generally speaking, moderately polar to nonpolar molecules are 
amenable to chromatography, however the molecules of most interest will determine choices such as 
liquid or gas chromatography, which solvent(s), separation technique, ionisation mode and polarity to 
employ. The following sections give a brief overview of different scenarios to identify documented 
(“known”) potential neurotoxicants and discover new ones, more comprehensive overviews (beyond 
the focus on neurotoxicants) are available elsewhere.26,27 

Target versus Non-target Mass Spectrometry
Analysis by mass spectrometry is generally the method of choice for identification and, in the case of 
target compounds, quantification, in complex sample matrices. Targeted analytical methods are ideal 
for rapid quantification of known (target) compounds; however, this is not the focus of the current 
article. The following material will concentrate on how to find potential neurotoxicants with NT-HR-
MS. This generally entails either liquid or gas chromatography coupled with high resolution tandem 
mass spectrometry (although other methods are also possible). Tandem mass spectrometry requires 
a combination of precursor ion, fragment ion(s), and retention time information to verify the presence 
and concentration of different molecules. Tandem mass spectrometry generally achieves high 
selectivity and sensitivities and a linear dynamic range spanning a few orders of magnitude. Low 
resolution gas chromatography mass spectrometry approaches, while less sensitive, still offer 
advantages in certain cases due to its well-established nature, such as the comprehensive nature of 
spectral libraries (over 1 million compounds compared with tens of thousands of compounds in 
tandem mass spectrometry libraries)28 but is not the focus here. The ability to quickly identify and 
quantify known compounds helps scientists to form dose-response relationships and provide data to 
support risk assessments and establish toxicity levels. For exploratory studies, however, NT-HR-MS is 
ideal as an initial step. Without analytical standards, it can be challenging to discriminate between 
isobaric compounds. Furthermore, low abundance features may be lost in the noise region. Factored 

https://comptox.epa.gov/dashboard/chemical_lists/neurotoxins
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together, these limitations may end up preventing the discovery of toxicologically significant 
compounds in a complex matrix. However, recent advances in mass spectrometry have made it 
possible to overcome these challenges to a certain extent, as the sensitivity and mass resolving power 
of the instruments have improved over the last two decades. Moreover, new separation techniques 
and ionisation sources have made it possible to expand the breadth of chemical space that can be 
covered if the different techniques are used side by side. The following text discusses this in the light 
of neurotoxicant analysis and discovery.

Sample “Pre-Processing”
Sample preparation and knowledge of the matrix plays a vital role in the discovery of new 
neurotoxicants as it dictates recovery or loss of the analytes of interest. As no single method is 
sufficient to capture all potential neurotoxicants, the best way to explore the presence of 
neurotoxicants would be to perform a categorical extraction with the intent of initial (non-target) 
identification using HR-MS and subsequent quantification using targeted methods. Categorical 
extraction builds on the knowledge that known/suspected neurotoxicants have very different 
properties, as demonstrated above. Categorical extraction is accomplished by creating theoretical 
compartments based on physicochemical properties: volatiles, nonpolar compounds, polar 
compounds, and metal containing compounds. Analysis of volatile components can be accomplished 
by using gas chromatography (GC). GC analysis with electron ionisation (EI) is optimal for compounds 
that are nonpolar but do not easily acquire or lose a hydrogen in the gas phase. Although EI is a harder 
ionisation than atmospheric pressure ionisation (API) techniques, the additional fragmentation 
provides a “fingerprint” that can be searched against spectral libraries such as NIST.29  Accurate mass 
GC-EI methods are slowly becoming available. One lesson that can be learned from the list of potential 
neurotoxicants is that the lower mass range must be used to accommodate low mass components (e.g. 
acrylamide and acrylonitrile); almost 60 compounds in the potential neurotoxicant list of 511 have 
masses below 100 (see Figure 4). While small components are often GC-amenable, care must be taken 
to prevent analyte loss by volatilisation (hence rapid analysis is desirable). Employing solid phase 
microextraction or headspace analysis followed by GC-HR-MS analysis would be two approaches to 
overcome this challenge.30,31 Extraction using non-polar solvents such as hexane, isooctane or ethyl 
acetate would also enable the recovery of nonpolar components from the matrix that have similar 
properties to the following potential neurotoxicant classes: pyrethroid pesticides, polyhalogenated 
biphenyls, and diphenyl ethers. Due to the efficiency of separation brought by GC, improved separation 
of analytes is achieved especially in cases where multiple congeners of an analyte class may be present. 
Further chromatographic selectivity may be achieved by employing multidimensional GC32. 
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