Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2019

Evidence for non-electrostatic interactions between a pyrophosphate-functionalized uranyl peroxide nanocluster and iron (hydr)oxide minerals

Luke R. Sadergaski, Samuel N. Perry, Luke R. Tholen, and Amy E. Hixon*

Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556 USA

*Corresponding author. Phone: +1 574 631 1872; Fax: +1 574 631 9236; E-mail: ahixon@nd.edu

Electronic Supplementary Information:

Extended Experimental
Electrospray ionization mass spectrometry
X-ray photoelectron spectroscopy
SEM-EDS analysis
Description of the kinetic analysis
Figures
Fig. S1. Powder X-ray diffractogram of goethite4
Fig. S2. Powder X-ray diffractogram of hematite
Fig. S3. Raman spectra of goethite and hematite
Fig. S4. Removal of uranium from solution as a function of time and goethite concentration in
systems containing 0.5 g L^{-1} U ₂₄ Pp ₁₂ at pH 9
Fig. S5. Removal of uranium from solution as a function of time and hematite concentration in
systems containing 0.5 g L^{-1} U ₂₄ Pp ₁₂ at pH 96
Fig. S6. Removal of uranium from solution as a function of time and $U_{24}Pp_{12}$ concentration in
systems containing 500 m ² L ⁻¹ goethite at pH 97
Fig. S7. Removal of uranium from solution as a function of time and $U_{24}Pp_{12}$ concentration in
systems containing 500 m ² L ⁻¹ hematite at pH 97
Fig. S8. Percent uranium, phosphorus, sodium, and lithium removed from solution as a function
of time in systems containing 0.5 g L^{-1} U ₂₄ Pp ₁₂ and 500 m ² L^{-1} goethite
Fig. S9. SEM image of goethite needles
Fig. S10. BSE image of goethite powder reacted with 1 g $L^{-1} U_{24} P p_{12}$
Fig. S11. U $4f_{5/2}$ binding energy and peak fit parameters of U ₂₄ Pp ₁₂ crystals
Fig. S12. U $4f_{5/2}$ binding energy and peak fit parameters of 2 g L ⁻¹ U ₂₄ Pp ₁₂ reacted with 500 m ²
L ⁻¹ goethite
Fig. S13. U $4f_{5/2}$ binding energy and peak fit parameters of 2 g L ⁻¹ U ₂₄ Pp ₁₂ reacted with 500 m ²
L ⁻¹ hematite
Fig. S14. P 2p binding energy and peak fit parameters of crystals containing $U_{24}Pp_{12}$ 10
Fig. S15. P $2p$ binding energy and peak fit parameters of the solid phase from a reactor
containing 2 mg mL ⁻¹ U ₂₄ Pp ₁₂ and 500 m ² L ⁻¹ goethite10

Fig. S16. P 2p binding energy and peak fit parameters of the solid phase from a reactor
containing 2 mg mL ⁻¹ $U_{24}Pp_{12}$ and 500 m ² L ⁻¹ hematite
Fig. S17. Na 1s binding energy and peak fit parameters of crystals containing U ₂₄ Pp ₁₂ 11
Fig. S18. Na 1s binding energy and peak fit parameters of the solid phase from a reactor
containing 2 mg mL ⁻¹ $U_{24}Pp_{12}$ and 500 m ² L ⁻¹ goethite
Fig. S19. O 1s binding energy and peak fit parameters of crystals containing U ₂₄ Pp ₁₂ 12
Fig. S20. Li 1s binding energy and peak fit parameters of crystals containing U ₂₄ Pp ₁₂ 12
Fig. S21. Raman spectrum of the solid phase from a reaction containing 2 mg mL ⁻¹ U ₂₄ Pp ₁₂ and
$500 \text{ m}^2 \text{ L}^{-1}$ goethite
Fig. S22. Raman spectra of powder resulting from solutions containing 2 g L ⁻¹ U ₂₄ Pp ₁₂ at pH 9
that were allowed to air-dry (A) and crystals containing U ₂₄ Pp ₁₂ nanoclusters (B)13
Fig. S23. ESI-MS spectra of 1 g $L^{-1} U_{24}Pp_{12}$ in Milli-Q water (A), 1 g $L^{-1} U_{24}Pp_{12}$ with 500 m ² L^{-1}
¹ goethite (B) and 1 g $L^{-1} U_{24} Pp_{12}$ with 500 m ² L^{-1} hematite (C) after 4 days
Fig. S24. Dependence of $log(k'_{rxn})$ on $log(hematite)$ at 0.5 g L ⁻¹ U ₂₄ Pp ₁₂
Fig. S25. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ at 500 m ² L ⁻¹ hematite
Fig. S26. Dependence of $log(k'_{rxn})$ on $log(hematite)$ at 0.5 g L ⁻¹ U U ₂₄ Pp ₁₂
Fig. S27. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ at 500 m ² L ⁻¹ hematite
Fig. S28. Dependence of $log(k'_{rxn})$ on $log(goethite)$ at 0.5 g L ⁻¹ U ₂₄ Pp ₁₂ 16
Fig. S29. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ in systems containing 500 m ² L ⁻¹ goethite. 16
Fig. S30. Dependence of $log(k'_{rxn})$ on $log(goethite)$ at 0.5 g L ⁻¹ U U ₂₄ Pp ₁₂
Fig. S31. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ at 500 m ² L ⁻¹ goethite
Tables
Table S1. Conditions of batch sorption experiments used to determine reaction orders with
respect to $U_{24}Pp_{12}$ and hematite concentration
Table S2. Conditions of batch sorption experiments used to determine reaction orders with
respect to $U_{24}Pp_{12}$ and goethite concentration
Table S3. Raw data supporting the linear regression in Fig. S24.
Table S4. Raw data supporting the linear regression in Fig. S25.
Table S5. Raw data supporting the linear regressions in Fig. S28.
Table S6. Raw data supporting the linear regression in Fig. S29.
References

Extended Experimental

Electrospray ionization mass spectrometry

Electrospray ionization mass spectrometry (ESI-MS) has been used successfully as a method for "fingerprinting" nanoclusters in solution.¹ In this study, ESI-MS was used to confirm that the $U_{24}Pp_{12}$ stock solution was monodisperse. ESI-MS was also used to characterize the persistence of $U_{24}Pp_{12}$ after being in contact with goethite and hematite by measuring the resulting supernatant at various points throughout the batch sorption experiments. Spectra were collected in negative ion mode using a Bruker microTOF-Q II high resolution quadrupole time-of-flight spectrometer. Samples were introduced by direct infusion rates between $350 - 450 \ \mu L \ min^{-1}$ and data were averaged over 120 seconds from $500 - 5000 \ m/z$.

ESI-MS results demonstrated that the $U_{24}Pp_{12}$ clusters remained intact in solutions containing goethite and hematite for the duration of the batch sorption experiments. The average molecular weight of multiple charge states determined by ESI-MS remained constant throughout the sorption experiments at pH 9 (see Fig. S23).

X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) was used measure the photoelectron spectrum of uranium to determine the valence state of uranium. Spectra were collected using a PHI VersaProbe II X-ray photoelectron spectrometer with monochromatic Al K radiation using a pass energy of 29.35 eV and a 100- μ m spot size. U₂₄Pp₁₂ crystals and reacted mineral samples were placed on double-stick tape for analysis. Surface neutralization was performed automatically and the measured U 4*f*, P 2*p*, Na 1*s*, and Li 1*s* binding energies were referenced by fixing the position of the C 1*s* peak to 285.0 eV. Shirley background and asymmetric peak shape profile parameters were used to model fitted U 4*f*_{5/2} peaks.^{2,3} Gaussian-Lorentzien peak shaper parameters were used to model fitted Fe 2*p*, P 2*p*, Na 1*s*, O 1*s* and Li 1*s* lines.^{4,5}

SEM-EDS analysis

Scanning electron microscopy (SEM) images were taken with a JEOL JCM-6000 Plus Neoscope Benchtop SEM at accelerating voltages from 10-15 kV. Compositional differences across each sample were investigated through backscatter electron (BSE) imaging. Energy dispersive X-ray spectroscopy (EDS) provided multielemental, semi-quantitative analysis through point spectra with energy resolution between 130-150 eV. Spectra were collected at 10 kV in BSE mode using a silicon drift detector (SDD). Reacted samples were rinsed twice with Milli-Q (18.2 M Ω cm at 25°C) water before dispersing a small quantity of material on the center of carbon tape adhered to an SEM stub. More than five spot analyses, on six goethite particles were conducted.

Description of the kinetic analysis

We assumed that pseudo-first-order kinetics described systems containing constant $U_{24}Pp_{12}$ concentration and varying mineral concentrations to generate a log-log plot of k'_{rxn} versus *[mineral]* (see Fig. S24). A linear regression of this plot yielded a straight line where b and k_{rxn} were derived from the slope and intercept, respectively, according to equation 1.

$$\log(k'_{rxn}) = \log(-k_{rxn}) + b * \log([mineral])$$
(1)

Second, we considered a condition with varying $U_{24}Pp_{12}$ concentration and constant mineral concentration to determine k'_{rxn} for each system. A log-log plot of k'_{rxn} versus $[U_{24}Pp_{12}]$ yields a straight line where *a* and k_{rxn} can be derived from the slope and intercept, respectively, according to equation 2 (see Fig. S25). Because k_{rxn} was negative, the logarithm of $-k_{rxn}$ was not undefined.

$$\log(k'_{rxn}) = \log(-k_{rxn}) + a * \log(U_{24}Pp_{12})$$
(2)

Since the reaction order with respect to $U_{24}Pp_{12}$ was not one, the initial assumption of first order with respect to $U_{24}Pp_{12}$ was not valid. Therefore, another iteration of the kinetic analysis was performed using the determined values of *a* and *b* until the reaction orders converged. This additional iteration utilized the power rule when solving the rate law. Data for this iterative analysis is presented in Figs. S26 – S27.

Similar data for the goethite kinetic analysis is provided in Figs. S28-S31.

Figures

Fig. S1. Powder X-ray diffractogram of 30 mg of goethite (red trace) and PDF 01-073-6522 (black trace).

Fig. S2. Powder X-ray diffractogram of 30 mg of hematite (red trace) and PDF 01-071-5088 (blue trace).

Fig. S3. Raman spectra of goethite (top) and hematite (bottom) with major Raman bands indicated which were matched with published results.⁶

Fig. S4. Removal of uranium from solution as a function of time and goethite concentration in systems containing 0.5 g L^{-1} U₂₄Pp₁₂ at pH 9. Data points represent the average of duplicate samples. Error bars represent propagation of error based on the uncertainty of ICP-OES measurements and gravimetric sample preparation.

Fig. S5. Removal of uranium from solution as a function of time and hematite concentration in systems containing 0.5 g L^{-1} U₂₄Pp₁₂ at pH 9. Data points represent the average of duplicate samples. Error bars represent propagation of error based on the uncertainty of ICP-OES measurements and gravimetric sample preparation.

Fig. S6. Removal of uranium from solution as a function of time and $U_{24}Pp_{12}$ concentration in systems containing 500 m² L⁻¹ goethite at pH 9. Data points represent the average of duplicate samples. Error bars represent propagation of error based on the uncertainty of ICP-OES measurements and gravimetric sample preparation.

Fig. S7. Removal of uranium from solution as a function of time and $U_{24}Pp_{12}$ concentration in systems containing 500 m² L⁻¹ hematite at pH 9. Data points represent the average of duplicate samples. Error bars represent propagation of error based on the uncertainty of ICP-OES measurements and gravimetric sample preparation.

Fig. S8. Percent uranium, phosphorus, sodium, and lithium removed from solution as a function of time in systems containing 0.5 g $L^{-1} U_{24}Pp_{12}$ and 500 m² L^{-1} goethite. Values in plots are an average of duplicate experiments. Error bars represent propagation of error based on the uncertainty of ICP-OES measurements.

Fig. S9. SEM image of goethite needles.

Fig. S10. BSE image of goethite powder reacted with 1 g $L^{-1} U_{24}Pp_{12}$.

Fig. S11. U $4f_{5/2}$ binding energy and peak fit parameters of $U_{24}Pp_{12}$ crystals.

Fig. S12. U $4f_{5/2}$ binding energy and peak fit parameters of 2 g L⁻¹ U₂₄Pp₁₂ reacted with 500 m² L⁻¹ goethite.

Fig. S13. U $4f_{5/2}$ binding energy and peak fit parameters of 2 g L⁻¹ U₂₄Pp₁₂ reacted with 500 m² L⁻¹ hematite.

Fig. S14. P 2p binding energy and peak fit parameters of crystals containing $U_{24}Pp_{12}$.

Fig. S15. P 2*p* binding energy and peak fit parameters of the solid phase from a reactor containing 2 mg mL⁻¹ U₂₄Pp₁₂ and 500 m² L⁻¹ goethite.

Fig. S16. P 2*p* binding energy and peak fit parameters of the solid phase from a reactor containing 2 mg mL⁻¹ U₂₄Pp₁₂ and 500 m² L⁻¹ hematite.

Fig. S17. Na 1s binding energy and peak fit parameters of crystals containing $U_{24}Pp_{12}$.

Fig. S18. Na 1s binding energy and peak fit parameters of the solid phase from a reactor containing 2 mg mL⁻¹ $U_{24}Pp_{12}$ and 500 m² L⁻¹ goethite.

Fig. S19. O 1s binding energy and peak fit parameters of crystals containing $U_{24}Pp_{12}$.

Fig. S20. Li 1s binding energy and peak fit parameters of crystals containing U₂₄Pp₁₂.

Fig. S21. Raman spectrum of the solid phase from a reaction containing 2 mg mL⁻¹ $U_{24}Pp_{12}$ and 500 m² L⁻¹ goethite. Raman signals at 809.5 cm⁻¹ and 853.2 cm⁻¹ are assigned to the symmetric stretching of U=O bonds in the uranyl groups and vibrations of O-O bonds of the bridging peroxo groups, respectively.

Fig. S22. Raman spectra of powder resulting from solutions containing 2 g $L^{-1} U_{24}Pp_{12}$ at pH 9 that were allowed to air-dry and (A) and crystals containing $U_{24}Pp_{12}$ nanoclusters (B). The main Raman signals at 820 cm⁻¹ and 856 cm⁻¹ are assigned to the symmetric stretching of U=O bonds in the uranyl groups and vibrations of O-O bonds of the bridging peroxo groups, respectively.

Fig. S23. ESI-MS spectra of 1 g $L^{-1} U_{24}Pp_{12}$ in Milli-Q water (A), 1 g $L^{-1} U_{24}Pp_{12}$ with 500 m² L^{-1} goethite (B) and 1 g $L^{-1} U_{24}Pp_{12}$ with 500 m² L^{-1} hematite (C) after 4 days.

Fig. S24. Dependence of $log(k'_{rxn})$ on log(hematite) at 0.5 g L⁻¹ U₂₄Pp₁₂. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The red shaded area represents the 95% confidence interval for the linear regression. Raw data is provided in Table S3.

Fig. S25. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ at 500 m² L⁻¹ hematite. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The shaded red area represents the 95% confidence interval for the linear regression. Raw data is provided in Table S4.

Fig. S26. Dependence of $log(k'_{rxn})$ on log(hematite) at 0.5 g L⁻¹ U U₂₄Pp₁₂. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The shaded red area represents the 95% confidence interval for the linear regression. Reaction term $b = 1.05 \pm 0.04$ and $k_{rxn} = (1.9 \pm 0.5) \times 10^{-3} (g \cdot L^{-1})^{0.886\pm0.001} (m^2 \cdot L^{-1})^{-1.05\pm0.04} (day^{-1}).$

Fig. S27. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ at 500 m² L⁻¹ hematite. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The red shaded area represents the 95% confidence interval for the linear regression. Reaction term $a = 0.12 \pm 0.01$ and $k_{rxn} = (1.76 \pm 0.01) \times 10^{-3} (g \cdot L^{-1})^{0.88 \pm 0.01} (m^2 \cdot L^{-1})^{-1.05 \pm 0.04} (day^{-1})$.

Fig. S28. Dependence of $log(k'_{rxn})$ on log(goethite) at 0.5 g L⁻¹ U₂₄Pp₁₂. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The red shaded area represents the 95% confidence interval for the linear regression. Raw data is provided in Table S5.

Fig. S29. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ in systems containing 500 m² L⁻¹ goethite. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The red shaded area represents the 95% confidence interval for the linear regression. Raw data is provided in Table S6.

Fig. S30. Dependence of $log(k'_{rxn})$ on log(goethite) at 0.5 g L⁻¹ U U₂₄Pp₁₂. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The red shaded area represents the 95% confidence interval for the linear regression. Reaction term $b = 0.61 \pm 0.03$ and $k_{rxn} = (6 \pm 0.1) \times 10^{-2} (g \cdot L^{-1})^{0.49 \pm 0.02} (m^2 \cdot L^{-1})^{-0.61 \pm 0.04} (day^{-1}).$

Fig. S31. Dependence of $log(k'_{rxn})$ on $log(U_{24}Pp_{12})$ at 500 m² L⁻¹ goethite. Data points represent the average of duplicate samples. Error bars represent propagation of error based on ICP-OES measurements and gravimetric sample preparation. The red shaded area represents the 95% confidence interval for the linear regression. Reaction term $a = 0.51 \pm 0.02$ and $k_{rxn} = (4.6 \pm 0.01) \times 10^{-2} (g \cdot L^{-1})^{0.49 \pm 0.02} (m^2 \cdot L^{-1})^{-0.61 \pm 0.04} (day^{-1}).$

TABLES

Table S1. Conditions of batch sorption experiments used to determine reaction orders with respect to $U_{24}Pp_{12}$ concentration, *a*, and hematite concentration, *b*.

$U_{24}Pp_{12} (g L^{-1})$	Hematite $(m^2 L^{-1})$
0.51 ± 0.01	105 ± 5
0.51 ± 0.01	211 ± 10
0.51 ± 0.01	522 ± 25
1.02 ± 0.02	526 ± 25
2.03 ± 0.04	524 ± 25

Table S2. Conditions of batch sorption experiments used to determine reaction orders with respect to $U_{24}Pp_{12}$ concentration, *a*, and goethite concentration, *b*.

$U_{24}Pp_{12} (g L^{-1})$	Goethite $(m^2 L^{-1})$
0.52 ± 0.01	100 ± 5
0.51 ± 0.01	203 ± 10
0.53 ± 0.01	501 ±25
1.15 ± 0.02	502 ± 25
2.08 ± 0.03	500 ± 25

Table S3. Raw data supporting the linear regression in Fig. S24.

[Hematite]	Time (days)	[U ppm] _t	$[U_{24}Pp_{12} g L^{-1}]_t$
$100 \text{ m}^2 \text{ L}^{-1}$	0.0069	219 ± 4	0.468 ± 0.007
	0.052	212 ± 3	0.453 ± 0.007
	0.141	205 ± 4	0.437 ± 0.009
$200 \text{ m}^2 \text{ L}^{-1}$	0.0062	213 ± 4	0.456 ± 0.007
	0.051	196 ± 3	0.420 ± 0.006
	0.140	181 ± 3	0.387 ± 0.006
$500 \text{ m}^2 \text{ L}^{-1}$	0.0056	191 ± 3	0.408 ± 0.007
	0.051	139 ± 2	0.298 ± 0.004
	0.140	113 ± 2	0.241 ± 0.004

$[U_{24}Pp_{12}]$	Time (days)	[U ppm] _t	$[U_{24}Pp_{12} g L^{-1}]_t$
0.5 g L^{-1}	0.0056	191 ± 3	0.408 ± 0.007
	0.051	139 ± 2	0.298 ± 0.004
	0.140	113 ± 2	0.241 ± 0.004
1 g L ⁻¹	0.0049	430 ± 7	0.92 ± 0.01
	0.050	374 ± 5	0.80 ± 0.01
	0.140	344 ± 6	0.74 ± 0.01
2 g L ⁻¹	0.0042	889 ± 15	1.90 ± 0.03
	0.049	841 ± 14	1.80 ± 0.03
	0.138	800 ± 13	1.71 ± 0.03

Table S4. Raw data supporting the linear regression in Fig. S25.

Table S5. Raw data supporting the linear regressions in Fig. S28.

[Goethite]	Time (days)	[U ppm] _t	$[U_{24}Pp_{12} g L^{-1}]_t$
$100 \text{ m}^2 \text{ L}^{-1}$	0.0083	189 ± 3	0.403 ± 0.006
	0.056	164 ± 3	0.351 ± 0.006
	0.125	154 ± 2	0.329 ± 0.005
$200 \text{ m}^2 \text{ L}^{-1}$	0.0076	173 ± 3	0.369 ± 0.006
	0.055	140 ± 2	0.300 ± 0.005
	0.124	122 ± 2	0.261 ± 0.004
$500 \text{ m}^2 \text{ L}^{-1}$	0.0069	179 ± 3	0.383 ± 0.006
	0.054	133 ± 2	0.283 ± 0.005
	0.124	98 ± 2	0.210 ± 0.003

Table S6. Raw data supporting the linear regression in Fig. S29.

$[U_{24}Pp_{12}]$	Time (days)	[U ppm] _t	$[U_{24}Pp_{12} g L^{-1}]_t$
0.5 g L^{-1}	0.0069	179 ± 3	0.383 ± 0.006
	0.054	133 ± 2	0.283 ± 0.005
	0.124	98 ± 2	0.210 ± 0.003
1 g L ⁻¹	0.0062	478 ± 8	1.02 ± 0.02
	0.054	407 ± 7	0.87 ± 0.02
	0.123	354 ± 6	0.76 ± 0.01
2 g L ⁻¹	0.0056	856 ± 14	1.83 ± 0.03
	0.053	781 ± 15	1.67 ± 0.03
	0.122	697 ± 11	1.49 ± 0.02

References

- B.T. McGrail, G.E. Sigmon, L.J. Jouffret, C.R. Andrews, P.C. Burns, Raman Spectroscopic 1 and ESI-MS Characterization of Uranyl Peroxide Cage Clusters, Inorg. Chem. 2014, 53, 1562-1569.
- 2 D.A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,
- D.A. Shinley, High-Resolution A-Kay Photoemission Spectrum of the Valence Bands of Gold, *Phys. Rev. B* 1972, 5, 4709–4714.
 M. Schindler, F.C. Hawthorne, M.S. Freund, P.C. Burns, XPS spectra of uranyl minerals and synthetic uranyl compounds. I: The U4f spectrum, *Geochim. Cosmochim. Acta* 2009, 73, 2471-2487. 3
- T.-C. Lin, G. Seshadri, J.A. Kelber, A consistent method for quantitative XPS peak analysis of 4 thin oxide films on clean polycrystalline iron surfaces, *Appl. Surf. Sci.* 1997, **119**, 83-92. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, *Handbook of X-ray Photoelectron*
- 5 Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, ed. J. Chastain, Perkin-Elmer Corporation, Eden Prairie, MN, 1992.
- M. Hanesch, Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies, *Geophys. J. Int.* 2009, **177**, 941-948. 6