Supplementary Information

# Size Distribution of Airborne Particle-Bound PAHs and o-PAHs and

# **Their Implications for Dry Deposition**

Yaqin Gao<sup>a</sup>, Yan Lyu\*<sup>a</sup>, Xiang Li\*<sup>a,b</sup>

<sup>a</sup>Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, P.R. China

<sup>b</sup>Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China

Correspondence to: Yan Lyu (15110740021@fudan.edu.cn); Xiang Li (lixiang@fudan.edu.cn)

\*Corresponding author.

| Table of Contents |   |
|-------------------|---|
| Number of Tables  | 8 |
| Number of Figures | 2 |

#### Lists of PAHs and o-PAHs cited in the main text

## Table S1

Physiochemical properties of the target 5 PAHs and 6 o-PAHs.

# Table S2

GC-MS/MS method parameters applied in analyzing PAHs and o-PAHs.

#### Table S3

The recovery and relative standard deviation of the target compounds.

## Table S4

Correlation matrix between o-PAH and corresponding parent PAH.

#### Table S5

The statistical significance using non-parametric Mann-Whitney U test for testing the seasonal variation of PAH and o-PAH species.

#### Table S6

Size distributions of particle-bound PAHs and o-PAHs (ng m<sup>-3</sup>)

# Table S7

Calculated dry deposition fluxes ( $F_D$ , ng m<sup>-2</sup> d<sup>-1</sup>) and dry deposition velocities ( $V_d$ , cm s<sup>-1</sup>) of size-fractionated PAHs and o-PAHs in Shanghai.

# Table S8

Correlation matrix between dry deposition fluxes of PAHs, o-PAHs, TPAHs and meteorological parameters (temperature, relative humidity and wind speed).

# Figure S1.

Estimated bulk dry deposition velocity (cm  $s^{-1}$ ) for size-resolved particles during oneyear sampling period in Shanghai, China.

# Figure S2.

Correlation between the contribution of coarse particle (> 2.1  $\mu$ m) bound individual PAHs and o-PAHs and their respective lg  $P_{L}^{o}$ (Pa).

#### Lists of PAHs and o-PAHs cited in the main text

List S1: (Beijing-Tianjin region)

acenaphthene (ACE), acenaphthylene (ACY), fluorene (FLO), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLA), pyrene (PYR), benz[a] anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DahA), indeno [1,2,3-cd]pyrene (IcdP), and benzo[ghi]perylene (BghiP).

List S2: (Guangzhou)

benzo[a]anthracene benzo[b]fluoranthene (BaA), chrysene (CHR), (BbF), benzo[k]fluoranthene (BkF), benzo[e]pyrene (BeP), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), dibenzo[a,h]anthracene (DahA) and benzo[ghi]perylene (BghiP)

List S3: (Turkey)

acenaphthylene (ACT), fluorene (FLN), phenanthrene (PHE), anthracene (ANT), fluoranthene (FL), pyrene (PY), benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), dibenzo[a,h]anthracene (DahA), benzo[ghi]perylene (BghiP)

| Compounds                      | Abbreviation | CAS No.   | MW     | $P^{\circ}_{\scriptscriptstyle \rm L}({\rm Pa})^1$ |
|--------------------------------|--------------|-----------|--------|----------------------------------------------------|
| Naphthalene                    | NAP          | 91-20-3   | 128.18 | 39.8                                               |
| Fluorene                       | FLU          | 86-73-7   | 166.22 | 0.618                                              |
| Phenanthrene                   | PHE          | 85-01-8   | 178.24 | 8.74×10 <sup>-2</sup>                              |
| Anthracene                     | ANT          | 120-12-7  | 178.24 | 6.59×10 <sup>-2</sup>                              |
| Benz[a]anthracene              | BaA          | 56-55-3   | 228.30 | 1.07×10 <sup>-4</sup>                              |
| 1,4-Naphthoquinone             | 1,4NQ        | 130-15-4  | 158.16 | 0.244                                              |
| 9-Fluorenone                   | 9FLO         | 486-25-9  | 180.21 | 2.80×10 <sup>-2</sup>                              |
| 9,10-Anthracenequinone         | 9,10AQ       | 84-65-1   | 208.22 | 5.90×10 <sup>-3</sup>                              |
| 9,10-Phenanthraquinone         | 9,10PQ       | 84-11-7   | 208.22 | 1.02×10 <sup>-2</sup>                              |
| Benzanthrone                   | Bzone        | 82-05-3   | 230.27 | 9.28×10 <sup>-4</sup>                              |
| Benz(a)anthracene-7,12-quinone | BAQ          | 2498-66-0 | 258.28 | 1.59×10 <sup>-4</sup>                              |

Table S1 Physiochemical properties of the target 5 PAHs and 6 o-PAHs

<sup>1</sup> The subcooled vapor pressure, under 298K, was estimated by the modified Grain method embedded in Estimation Programs Interface (EPI) Suite software (version 4.1) developed by the US Environmental Protection Agency.

| Compounds | RT(min) | Precursor | Product | Collision |
|-----------|---------|-----------|---------|-----------|
| NAD       | 6.00    | 128       | 128.1   | 5         |
| INAL      | 0.00    | 128       | 102.1   | 25        |
| ELL       | 10.20   | 166       | 166.1   | 5         |
| ГLU       | 10.20   | 166       | 165.1   | 20        |
| DUE       | 11.95   | 178       | 178.1   | 5         |
| 11112     | 11.65   | 178       | 152.1   | 25        |
| ANT       | 11.85   | 178       | 178.1   | 5         |
| ANI       | 11.65   | 178       | 152.1   | 25        |
| Dat       | 16.00   | 228       | 228.1   | 5         |
| DaA       | 16.00   | 228       | 226.0   | 35        |
| 1.4NO     | 8.00    | 158       | 130.1   | 5         |
| 1,4NQ     | 8.00    | 158       | 102.0   | 20        |
| OEL O     | 11.00   | 180       | 180.1   | 5         |
| 9610      | 11.00   | 152       | 151.1   | 15        |
| 0.1040    | 12.00   | 208       | 180.1   | 10        |
| 9,10AQ    | 13.00   | 152       | 152.0   | 5         |
| 0.1000    | 14 15   | 180       | 152.1   | 20        |
| 9,10FQ    | 14.15   | 152       | 151.1   | 15        |
| Bzone     | 16.00   | 230       | 230.1   | 5         |
| DZOIIC    | 10.00   | 202       | 202.1   | 5         |
| BAO       | 16.00   | 230       | 202.1   | 20        |
| BAQ       | 16.90   | 202       | 202.1   | 5         |

**Table S2** GC-MS/MS method parametersapplied in analyzing parent PAHs and o-PAHs.

| Compounda | Daaayary | Relative           |  |  |
|-----------|----------|--------------------|--|--|
| Compounds | Recovery | standard deviation |  |  |
| NAP       | 93       | 9                  |  |  |
| FLU       | 80       | 15                 |  |  |
| PHE       | 89       | 7                  |  |  |
| ANT       | 92       | 17                 |  |  |
| BaA       | 93       | 10                 |  |  |
| 1,4NQ     | 115      | 16                 |  |  |
| 9FLO      | 96       | 5                  |  |  |
| 9,10AQ    | 105      | 13                 |  |  |
| 9,10PQ    | 95       | 8                  |  |  |
| Bzone     | 97       | 12                 |  |  |
| BAQ       | 95       | 8                  |  |  |

**Table S3**The recovery and relativestandard deviation of the target compounds.

|        | NAP  | 1,4NQ | FLU    | 9FLO   | ANT    | 9,10AQ | PHE    | 9,10PQ | BaA    | Bzone  | BAQ    | p-PAHs | o-PAHs |
|--------|------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| NAP    | 1.00 | -0.32 | -0.47* | -0.14  | -0.33  | -0.40  | -0.33  | -0.39  | -0.42  | -0.49* | -0.25  | -0.29  | -0.28  |
| 1,4NQ  |      | 1.00  | 0.68** | 0.70** | 0.72** | 0.88** | 0.75** | 0.90** | 0.79** | 0.77** | 0.74** | 0.77** | 0.89** |
| FLU    |      |       | 1.00   | 0.53*  | 0.91** | 0.57** | 0.86*  | 0.67** | 0.87** | 0.64** | 0.69** | 0.89** | 0.66** |
| 9FLO   |      |       |        | 1.00   | 0.55** | 0.64** | 0.63** | 0.74** | 0.66** | 0.78** | 0.85** | 0.66** | 0.88** |
| ANT    |      |       |        |        | 1.00   | 0.57** | 0.95** | 0.74** | 0.91** | 0.65** | 0.63** | 0.94** | 0.67** |
| 9,10AQ |      |       |        |        |        | 1.00   | 0.62** | 0.73** | 0.70** | 0.70** | 0.70** | 0.63** | 0.86** |
| PHE    |      |       |        |        |        |        | 1.00   | 0.81** | 0.93** | 0.69** | 0.71** | 0.96** | 0.71** |
| 9,10PQ |      |       |        |        |        |        |        | 1.00   | 0.80** | 0.80** | 0.75*  | 0.77** | 0.88** |
| BaA    |      |       |        |        |        |        |        |        | 1.00   | 0.81** | 0.74** | 0.94** | 0.77** |
| Bzone  |      |       |        |        |        |        |        |        |        | 1.00   | 0.86** | 0.71** | 0.86** |
| BAQ    |      |       |        |        |        |        |        |        |        |        | 1.00   | 0.73** | 0.87** |
| p-PAHs |      |       |        |        |        |        |        |        |        |        |        | 1.00   | 0.75** |
| o-PAHs |      |       |        |        |        |        |        |        |        |        |        |        | 1.00   |

Table S4 Correlation matrix between o-PAH and corresponding parent PAH

Significant values are marked in bold. \*Correlation is significant at 0.05 level (two-tailed). \*\*Correlation is significant at 0.01 level (two-tailed).

**Table S5** The statistical significance using non-parametricMann-Whitney U test for testing the seasonal variation of PAHand o-PAH species

|                                | Abbreviation | р     |
|--------------------------------|--------------|-------|
| Naphthalene                    | NAP          | 0.32  |
| Fluorene                       | FLU          | 0.004 |
| Anthracene                     | ANT          | 0.001 |
| Phenanthrene                   | PHE          | 0.000 |
| Benz(a)anthracene              | BaA          | 0.004 |
| ∑5PAHs                         | PAHs         | 0.001 |
| 1,4-Naphthoquinone             | 1,4NQ        | 0.155 |
| 9-Fluorenon                    | 9FLO         | 0.055 |
| 9,10-Anthracenequinone         | 9,10AQ       | 0.32  |
| 9,10-Phenanthraquinone         | 9,10PQ       | 0.023 |
| Benzoanthrone                  | Bzone        | 0.286 |
| Benz(a)anthracene-7,12-quinone | BAQ          | 0.055 |
| ∑60-PAHs                       | o-PAHs       | 0.102 |

 $^{1}$  p values are for warm season (summer and spring) and

cold season (winter and autumn).

Table S6 Size distributions of particle-bound PAHs and o-PAHs (ng  $m^{-3}$ )

| Size   | <0.4            | 0.4~0.7         | 0.7~1.1         | 1.1~2.1         | 2.1~3.3         | 3.3~4.7         | 4.7~5.8         | 5.8~9.0         | 9.0~10.0        |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| NAP    | 0.15±0.02       | $0.15 \pm 0.02$ | 0.16±0.03       | $0.15 \pm 0.05$ | $0.15 \pm 0.03$ | $0.15 \pm 0.02$ | 0.15±0.03       | 0.17±0.03       | 0.17±0.03       |
| 1,4NQ  | 0.21±0.06       | $0.23 \pm 0.09$ | $0.23 \pm 0.08$ | $0.22 \pm 0.06$ | $0.21 \pm 0.07$ | $0.21 \pm 0.06$ | $0.21 \pm 0.07$ | $0.22 \pm 0.07$ | 0.21±0.07       |
| FLU    | $0.13 \pm 0.03$ | $0.13 \pm 0.03$ | $0.14 \pm 0.03$ | $0.15 \pm 0.04$ | $0.12 \pm 0.02$ | $0.14{\pm}0.03$ | $0.14 \pm 0.03$ | $0.17 \pm 0.05$ | $0.15 \pm 0.04$ |
| 9FLO   | $0.25 \pm 0.08$ | 0.29±0.12       | 0.25±0.10       | 0.26±0.10       | $0.26 \pm 0.09$ | $0.25 \pm 0.09$ | 0.26±0.09       | 0.31±0.11       | $0.27 \pm 0.08$ |
| ANT    | $0.13 \pm 0.02$ | $0.13 \pm 0.02$ | $0.13 \pm 0.03$ | $0.13 \pm 0.02$ | $0.13 \pm 0.02$ | $0.13 \pm 0.02$ | $0.12 \pm 0.02$ | $0.13 \pm 0.02$ | 0.13±0.02       |
| 9,10AQ | $0.67 \pm 0.31$ | 0.61±0.24       | $0.57 \pm 0.30$ | $0.57 \pm 0.29$ | $0.50 \pm 0.22$ | $0.53 \pm 0.29$ | 0.53±0.26       | 0.51±0.24       | 0.60±0.31       |
| PHE    | 0.31±0.09       | $0.31 \pm 0.10$ | 0.33±0.12       | 0.34±0.16       | $0.30 \pm 0.10$ | $0.29{\pm}0.09$ | $0.28 \pm 0.08$ | $0.30 \pm 0.09$ | $0.31 \pm 0.09$ |
| 9,10PQ | $0.38 \pm 0.15$ | $0.38 \pm 0.19$ | $0.47 \pm 0.34$ | $0.49 \pm 0.40$ | $0.32 \pm 0.10$ | $0.29{\pm}0.07$ | $0.28 \pm 0.06$ | $0.30 \pm 0.07$ | $0.32 \pm 0.07$ |
| BaA    | $0.48 \pm 0.09$ | $0.54 \pm 0.14$ | 0.56±0.17       | 0.52±0.13       | $0.22 \pm 0.06$ | $0.18 \pm 0.04$ | 0.13±0.03       | $0.17 \pm 0.04$ | $0.22 \pm 0.06$ |
| Bzone  | $0.41 \pm 0.17$ | $0.45 \pm 0.24$ | $0.45 \pm 0.26$ | $0.35 \pm 0.14$ | $0.26 \pm 0.03$ | $0.25 \pm 0.02$ | $0.24 \pm 0.02$ | $0.24 \pm 0.02$ | $0.25 \pm 0.02$ |
| BAQ    | $0.45 \pm 0.07$ | 0.45±0.11       | 0.47±0.16       | 0.43±0.12       | 0.35±0.03       | 0.34±0.02       | 0.34±0.03       | 0.35±0.03       | 0.36±0.03       |

**Table S7** Calculated dry deposition fluxes ( $F_D$ , ng m<sup>-2</sup> d<sup>-1</sup>) and dry deposition velocities ( $V_d$ , cm s<sup>-1</sup>) of size-fractionated PAHs and o-PAHs in Shanghai.

| Compound | F <sub>D</sub> | $V_d$           |
|----------|----------------|-----------------|
| NAP      | 241±54         | $0.20{\pm}0.03$ |
| 1,4NQ    | 327±127        | 0.19±0.03       |
| FLU      | 204±63         | $0.21 \pm 0.03$ |
| 9FLO     | 408±112        | $0.20{\pm}0.03$ |
| ANT      | 194±45         | $0.20{\pm}0.03$ |
| 9,10AQ   | 834±254        | $0.20{\pm}0.03$ |
| PHE      | 457±146        | 0.19±0.03       |
| 9,10PQ   | 498±135        | 0.19±0.03       |
| BaA      | 434±103        | $0.17 \pm 0.03$ |
| Bzone    | 445±72         | $0.18 \pm 0.03$ |
| BAQ      | 574±74         | 0.19±0.03       |

**Table S8** Correlation matrix between dry deposition fluxes of PAHs, o-PAHs, TPAHs and meteorological parameters (temperature, relative humidity and wind speed)

| PAHs    | o-PAHs                          | TPAHs <sup>1</sup>                                      |
|---------|---------------------------------|---------------------------------------------------------|
| -0.65** | -0.65**                         | -0.71**                                                 |
| 0.38    | -0.08                           | 0.18                                                    |
| 0.30    | -0.17                           | 0.24                                                    |
|         | PAHs<br>-0.65**<br>0.38<br>0.30 | PAHs o-PAHs   -0.65** -0.65**   0.38 -0.08   0.30 -0.17 |

<sup>1</sup> TPAHs is the sum of PAHs and o-PAHs.

Significant values are marked in bold. \*\*Correlation is significant at 0.01 level (twotailed).



**Fig. S1** Estimated bulk dry deposition velocity (cm s<sup>-1</sup>) for size-resolved particles during one-year sampling period in Shanghai, China.



**Fig. S2** Correlation between the contributions of coarse particle (> 2.1  $\mu$ m) bound individual PAHs and o-PAHs and their respective lg  $P_{\rm L}^{\circ}({\rm Pa})$ .