SUPPLEMENTARY INFORMATION

# Organic contaminants of emerging concern in Norwegian digestates from biogas production

Aasim M. Ali<sup>\*,a</sup>, Astrid S. Nesse<sup>b</sup>, Susanne Eich-Greatorex<sup>b</sup>, Trine A. Sogn<sup>b</sup>, Stine G. Aanrud<sup>c</sup>,

John A. Bunæs<sup>c</sup>, Jan L. Lyche<sup>c</sup>, Roland Kallenborn<sup>*a,c,d*</sup>

<sup>a</sup> Faculty of Chemistry, Biotechnology and food Sciences (KBM); Norwegian University of Life Sciences (NMBU), NO-1432 Aas, Norway.

<sup>b</sup> Faculty of Environmental Sciences and Natural Resource Management (MiNa), Norwegian University of Life Sciences (NMBU), NO-1432 Aas, Norway.

<sup>c</sup> Faculty of Veterinary Medicine (VetFak), Norwegian University of Life Sciences (NMBU), NO-

0454 Oslo, Norway

<sup>d</sup> University Centre in Svalbard, Arctic Technology, NO-9171 Longyearbyen, Svalbard, Norway

### **Method description**

The methods applied for the quantification of targeted analytes for the here reported study was validated and optimised as follows.

### S1. Target substance characterisation

The selection of the compounds for the here performed study was based on their relatively high consumption rate and their previous detection in some environmental samples collected from Norway and the European environment. Table S1 lists the starting list of the selected CECs.

### Table S1 : Target chemicals of emerging concern (CECs)

| No. | Compound<br>(Abbreviation)                          | Mol. formula                                                      | Structure                                                | CAS<br>Number   | LogP* | LogD (pH<br>7.4) <sup>*</sup> | LogK <sub>oc</sub> (pH<br>7.4) <sup>*</sup> | Description                        | Supplier                                          |
|-----|-----------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-----------------|-------|-------------------------------|---------------------------------------------|------------------------------------|---------------------------------------------------|
| 1   | Acetaminophen (ACE)                                 | C8H9NO2                                                           | HO                                                       | 103-90-2        | 0.34  | 0.40                          | 1.59                                        | nonsteroidal anti-<br>inflammatory | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 2   | Amitriptyline<br>hydrochloride (AMT)                | C <sub>20</sub> H <sub>23</sub> N · HCl                           | HCI                                                      | 549-18-8        | 4.92  | 2.96                          | 2.18                                        | antidepressant                     | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 3   | Atenolol (ATN)                                      | C <sub>14</sub> H <sub>22</sub> N <sub>2</sub> O <sub>3</sub>     |                                                          | 29122-<br>68-7  | 0.10  | -1.85                         | 0                                           | beta-blocker                       | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 4   | Atorvastatin calcium<br>salt trihydrate (ATO)       | C <sub>66</sub> H <sub>68</sub> CaF₂N₄O <sub>10</sub>             | $ \begin{array}{c}                                     $ | 134523-<br>03-8 | 4.13  | 1.25                          | 0.64                                        | antilipidemic                      | Toronto Research<br>Chemicals,<br>Toronto, Canada |
| 5   | Caffeine (CAF)                                      | C <sub>8</sub> H <sub>10</sub> N <sub>4</sub> O <sub>2</sub>      |                                                          | 58-08-2         | -0.13 | 0.28                          | 1.53                                        | Psychostimulants                   | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 6   | Carbamazepine (CAR)                                 | C15H12N2O                                                         | O NH <sub>2</sub>                                        | 298-46-4        | 2.67  | 2.28                          | 2.61                                        | anticonvulsant                     | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 7   | (±)-Chlorpheniramine<br>maleate salt (CPA)          | C16H19CIN2 ·<br>C4H4O4                                            |                                                          | 113-92-<br>8    | 3.39  | 1.16                          | 1.12                                        | antihistaminic                     | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 8   | Cephalexin (CPX)                                    | C <sub>16</sub> H <sub>17</sub> N <sub>3</sub> O <sub>4</sub> S   |                                                          | 15686-71-<br>2  | 0.65  | -2.83                         | 0                                           | antibiotic                         | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 9   | Ciprofloxacin (CIP)                                 | C <sub>17</sub> H <sub>18</sub> FN <sub>3</sub> O <sub>3</sub>    |                                                          | 85721-<br>33-1  | 0.65  | -2.23                         | 0                                           | antibiotic                         | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 10  | <i>N,N</i> -Diethyl-3-<br>methylbenzamide<br>(DEET) | C <sub>12</sub> H <sub>17</sub> NO                                |                                                          | 134-62-3        | 1.96  | 2.24                          | 2.59                                        | insect repellent                   | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 11  | Diclofenac sodium<br>salt (DCF)                     | C <sub>14</sub> H <sub>10</sub> Cl <sub>2</sub> NNaO <sub>2</sub> | CI<br>NH<br>CI<br>O<br>Na <sup>+</sup>                   | 15307-<br>79-6  | 4.06  | 1.37                          | 5.07                                        | nonsteroidal anti-<br>inflammatory | Sigma Aldrich,<br>Oslo,<br>Norway                 |
| 12  | Fluoxetine<br>hydrochloride (FLX)                   | C <sub>17</sub> H <sub>18</sub> F <sub>3</sub> NO · HCI           | F<br>F<br>HCI<br>H                                       | 56296-<br>78-7  | 4.09  | 1.75                          | 1.17                                        | antidepressant                     | Sigma Aldrich,<br>Oslo,<br>Norway                 |

| No. | Compound<br>(Abbreviation)        | Mol. formula                                                          | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAS<br>Number   | LogP* | LogD (pH<br>7.4) <sup>*</sup> | LogK <sub>oc</sub> (pH<br>7.4) <sup>*</sup> | Description                                                           | Supplier                              |
|-----|-----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------------------------------|---------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|
| 13  | Ibuprofen (IBP)                   | C <sub>13</sub> H <sub>18</sub> O <sub>2</sub>                        | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15687-<br>27-1  | 3.75  | 0.45                          | 0.29                                        | nonsteroidal anti-<br>inflammatory                                    | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 14  | Losartan potassium<br>(LOS)       | C22H22CIKN6O                                                          | $K^+ \underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\underset{N=N}{\overset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N=N}{\underset{N}{$ | 124750-<br>99-8 | 3.56  | 1.29                          | 1.17                                        | Anti-hypertensive                                                     | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 15  | Metformin<br>hydrochloride (MEF)  | NH₂C(=NH)NHC(=<br>NH)N(CH₃)₂ · HCI                                    | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1115-70-<br>4   | -2.31 | -3.36                         | 0                                           | Antidiabetic                                                          | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 16  | Metoprolol (MTP)                  | C <sub>15</sub> H <sub>25</sub> NO <sub>3</sub>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37350-<br>58-6  | 1.79  | -0.25                         | 0.28                                        | β-blocker                                                             | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 17  | Metronidazole (MET)               | C₀H9N3O3                                                              | ONT NOT NOT NOT NOT NOT NOT NOT NOT NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 443-48-1        | -0.01 | 0.05                          | 1.40                                        | antibiotic                                                            | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 18  | Prednisolone (PRE)                | C <sub>21</sub> H <sub>28</sub> O <sub>5</sub>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50-24-8         | 1.50  | 1.66                          | 2.28                                        | Corticosteroid                                                        | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 19  | Ranitidine<br>hydrochloride (RAN) | C <sub>13</sub> H <sub>22</sub> N <sub>4</sub> O <sub>3</sub> S · HCl | N<br>N<br>HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66357-<br>59-3  | 1.23  | -0.63                         | 0.57                                        | Histamine H <sub>1</sub> and<br>H <sub>2</sub> receptor<br>antagonist | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 20  | Trimethoprim (TRI)                | C <sub>14</sub> H <sub>18</sub> N <sub>4</sub> O <sub>3</sub>         | O<br>O<br>N<br>NH <sub>2</sub><br>NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 738-70-5        | 0.79  | 1                             | 1.86                                        | antibiotic                                                            | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 21  | Sulfadoxine (SUL)                 | C <sub>12</sub> H <sub>14</sub> N <sub>4</sub> O <sub>4</sub> S       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2447-57-<br>6   | 0.34  | -1.04                         | 0                                           | antibiotic                                                            | Sigma Aldrich,<br>Oslo,<br>Norway     |
| 22  | Simvastatin (SMV)                 | C <sub>25</sub> H <sub>38</sub> O <sub>5</sub>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79902-<br>63-9  | 4.41  | 4.60                          | 3.88                                        | antilipidemic                                                         | Chiron<br>AS,<br>Trondheim,<br>Norway |
| 23  | Sulfamethoxazole<br>(SMX)         | C <sub>10</sub> H <sub>11</sub> N <sub>3</sub> O <sub>3</sub> S       | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 723-46-6        | 0.89  | -0.56                         | 0.52                                        | antibiotic                                                            | Sigma Aldrich,<br>Oslo,<br>Norway     |

| No. | Compound (Abbreviation)                             | Mol.<br>formula                                                                    | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS Number  | LogP* | LogD (pH<br>7.4) <sup>*</sup> | LogK <sub>oc</sub><br>(pH 7.4) <sup>*</sup> | Description                                           | Supplier                                                |
|-----|-----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| 24  | Warfarin (WAR)                                      | C <sub>19</sub> H <sub>16</sub> O <sub>4</sub>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81-81-2     | 3.42  | 0.30                          | 0.26                                        | Anticoagulant                                         | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 25  | 2-hydroxyibuprofen (IBP-<br>OH)                     | C <sub>13</sub> H <sub>18</sub> O <sub>3</sub>                                     | но ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51146-55-5  | 1.69  | -0.51                         | 0                                           | transformation<br>product of<br>ibuprofen             | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 26  | Carboxy ibuprofen (IBP-<br>Car)                     | C <sub>13</sub> H <sub>16</sub> O <sub>4</sub>                                     | но С ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15935-54-3  | 1.82  | -2.65                         | 0                                           | transformation<br>product of<br>ibuprofen             | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 27  | 5-Hydroxydiclofenac<br>(5OH-DCF)                    | C <sub>14</sub> H <sub>11</sub> Cl <sub>2</sub><br>NO <sub>3</sub>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69002-84-2  | 3.91  | 0.96                          | 0.45                                        | transformation<br>product of<br>diclofenac            | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 28  | Carbamazepine 10, 11-<br>epoxide<br>(CAR-1011)      | C <sub>15</sub> H <sub>12</sub> N <sub>2</sub><br>O <sub>2</sub>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36507-30-9  | 1.26  | 1.31                          | 2.09                                        | transformation<br>product of<br>carbamazepine         | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 29  | 3-Hydroxycarbamazepine<br>(CAR-3OH)                 | C <sub>15</sub> H <sub>12</sub> N <sub>2</sub><br>O <sub>2</sub>                   | OH<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68011-67-6  | 2.44  | 2.27                          | 2.61                                        | transformation<br>product of<br>carbamazepine         | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 30  | Acridine (ACR)                                      | C13H9N                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 260-94-6    | 3.40  | 3.34                          | 3.18                                        | transformation<br>product of<br>carbamazepine         | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 31  | Salicylic acid<br>(SA)                              | C7H6O3                                                                             | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69-72-7     | 2.06  | -0.77                         | 0                                           | anti-<br>inflammatory                                 | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 32  | Ranitidine N-oxide<br>(RAN-O)                       | C13H22N4<br>O4S                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73857-20-2  | -1.54 | -0.76                         | 0.96                                        | transformation<br>product of<br>ranitidine            | Sigma Aldrich,<br>Oslo,<br>Norway                       |
| 33  | 2-Hydroxy Atorvastatin<br>Calcium Salt<br>(2OH-ATO) | C <sub>66</sub> H <sub>68</sub> CaF <sub>2</sub><br>N <sub>4</sub> O <sub>12</sub> | $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | 265989-46-6 | 4.13  | 1.05                          | 0.53                                        | transformation<br>product of<br>atorvastatin          | Toronto<br>Research<br>Chemicals,<br>Toronto,<br>Canada |
| 34  | N-Acetyl Sulfamethoxazole<br>(ACY-SMX)              | C <sub>12</sub> H <sub>13</sub> N <sub>3</sub> O <sub>4</sub><br>S                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21312-10-7  | 1.48  | -0.28                         | 0.61                                        | transformation<br>product of<br>sulfameth-<br>oxazole | Toronto<br>Research<br>Chemicals,<br>Toronto,<br>Canada |
| 35  | Norfluoxetine<br>hydrochloride<br>(NOR)             | $\begin{array}{c} C_{16}H_{16}F_{3}\\ NO\cdot HCI \end{array}$                     | F<br>F<br>O<br>NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57226-68-3  | 4.36  | 2.23                          | 1.84                                        | antidepressant                                        | Sigma Aldrich,<br>Oslo,<br>Norway                       |

| No. | Compound<br>(Abbreviation)                                          | Mol.<br>formula                                                 | Structure                                                                      | CAS Number | LogP* | LogD<br>(pH<br>7.4) <sup>*</sup> | LogK <sub>oc</sub><br>(pH 7.4) <sup>*</sup> | Description                                  | Supplier                                             |
|-----|---------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|------------|-------|----------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------------------|
| 36  | N-Acetyl Sulfadiazine<br>(ACY-SAD)                                  | C <sub>12</sub> H <sub>12</sub> N <sub>4</sub> O <sub>3</sub> S |                                                                                | 127-74-2   | 0.41  | -0.86                            | 0.38                                        | transformation<br>product of<br>Sulfadiazine | Toronto<br>Research<br>Chemicals,<br>Toronto, Canada |
| 37  | Tris (1-chloro-2-propyl)<br>phosphate, mixture of<br>isomers (TCPP) | C9H18Cl3O4P                                                     |                                                                                | 13674-84-5 | 0.48  | 1.42                             | 2.14                                        | flame retardant                              | Sigma Aldrich,<br>Oslo,<br>Norway                    |
| 38  | Salinomycin<br>(SLM)                                                | C <sub>42</sub> H <sub>70</sub> O <sub>11</sub>                 |                                                                                | 53003-10-4 | 6.10  | 2.77                             | 1.53                                        | anticoccidial<br>drug                        | Sigma Aldrich,<br>Oslo,<br>Norway                    |
| 39  | Monensin sodium salt<br>(MON)                                       | C <sub>36</sub> H <sub>61</sub> NaO <sub>11</sub>               | HO<br>O<br>HO<br>O<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO | 22373-78-0 | 3.72  | 0.45                             | 0.23                                        | anticoccidial<br>drug                        | Sigma Aldrich,<br>Oslo,<br>Norway                    |
| 40  | Narasin (NAR)                                                       | C43H72O11                                                       |                                                                                | 55134-13-9 | 6.59  | 3.20                             | 1.76                                        | anticoccidial<br>drug                        | Sigma Aldrich,<br>Oslo,<br>Norway                    |
| 41  | Octocrylene (OCR)                                                   | C <sub>24</sub> H <sub>27</sub> NO <sub>2</sub>                 |                                                                                | 6197-30-4  | 7.53  | 6.34                             | 4.82                                        | Sunscreen<br>agents                          | Sigma Aldrich,<br>Oslo,<br>Norway                    |

All structures were prepared with ChemDraw Professional (version 15.0.0.106), PerkinElmer Informatics, Inc. (Boston, Massachusetts, USA)

\* Predicted data is calculated with ACD/Labs Percepta Platform – PhysChem Module, Toronto, CA. (http://www.chemspider.com/Chemical Structure.18219.html).

### S.2. Chemicals

Acetonitrile (CH<sub>3</sub>CN, HPLC grade) and methanol (MeOH, HPLC grade) were purchased from Sigma-Aldrich and VWR (West Chester, PA, USA). Reagent grade formic acid (CH<sub>2</sub>O<sub>2</sub>), hydrochloric acid (HCl), disodium ethylene diamine tetra acetate (Na<sub>2</sub>EDTA), and ammonium hydroxide (NH<sub>4</sub>OH) were purchased from Sigma-Aldrich. The water used was grade 1 purified with a Milli-Q water purification system (Millipore, Bedford, MA, USA).

#### S.3. Extraction and sample preparation

**S.3.1.** Extraction of the target compounds from solid digestate: An aliquot of 1.0 g (wet weight, ww) sample of a solid digestate was weighed into 15 mL polypropylene centrifuge tube. Subsequently, 6.0 mL of extraction solution A (MeOH: CH<sub>3</sub>CN: Water with 0.1% Na<sub>2</sub>EDTA and 0.2% formic acid; 70:20:10) was added into the sample and the mixture was vortexed for 20 s and then the tube was mechanically shaken for 10 min at 1400 rpm using IKA Vibrax VXR vibrator (Janke & Kunkel, Staufen, Germany). The mixture was further ultrasonically extracted for 10 min and then centrifuged for 5 min at 3000 rpm. Subsequently, the supernatant was transferred to another 15 mL polypropylene centrifuge tube. The sample was further extracted with 6.0 mL of extraction solution B (MeOH: CH<sub>3</sub>CN: Water 0.1%NaEDTA, 0.2% NH<sub>4</sub>OH; 70:20:10). The supernatants were combined and directly passed through an SPE cartridge PRIME HLB (60 mg, 3 mL) and collected. The collected solution was evaporated to dryness under air stream at 40 °C using a Reacti-Therm III evaporating unit (Thermo Fisher Scientific Inc., Rockford, USA). After addition of recovery standard (10 µg/mL, 2.5 µL), the residue was dissolved with 20 % CH<sub>3</sub>CN in water until the final volume reached 0.5 mL, and the sample was then vortexed and subsequently filtered through a 0.2 µm microcentrifuge filter (Spin-X, Costar, Corning Inc., Corning, NY, USA). The resulting sample was finally transferred to polypropylene vials for quantitative LC–MS/MS analysis.

**5.3.2.** *Extraction of the target compounds from liquid digestate:* Aliquots: An aliquot of 2.0 mL of a liquid digestate sample was pipetted into 15 mL polypropylene centrifuge tube. Subsequently, 4.0 mL of extraction solution A was added, and the mixture was vortexed for 20 s. Subsequently, the tube was mechanically shaken for 10 min at 1400 rpm using an Vibrax VXR vibrator (IKA, Janke & Kunkel, Staufen, Germany). The mixture was further ultrasonically extracted for 10 min and then centrifuged for 5 min at 3000 rpm. Subsequently, the supernatant was transferred to a clean 15 mL polypropylene centrifuge tube. The extraction was repeated again using 4.0 mL of extraction solution B. The supernatants were combined, evaporated until the volume reached approximately 3 mL, 6.0 mL of Milli Q water was added, and the resulting solution was then directly loaded onto a SPE cartridge with PRIME HLB (60 mg, 3 mL) as adsorbnet. SPE was conducted by applying a low vacuum to the manifold (water jet), assuring a flow rate of 1- 3 drops per second. The cartridges were then washed with 2 mL of 5% MeOH in water and

dried under low vacuum for 10 min. Elution was performed with 3.0 mL of (CH<sub>3</sub>CN:MeOH; 9:1). The resulting eluates were evaporated to

dryness under a gentle air stream (O<sub>2</sub>, 5.0 quality, AGA, Oslo, Norway) at 40 °C using a Reacti-Therm III evaporating unit (Thermo Fisher Scientific

Inc., Rockford, USA). After addition of the recovery standard (10 μg/mL, 2.5 μL), the residue was dissolved with 20 % CH<sub>3</sub>CN in water until the

final volume reached 0.5 mL, and the sample was then vortexed and subsequently filtered through a 0.2 µm microcentrifuge filter (Spin-X, Costar,

Corning Inc., Corning, NY, USA) prior to quantification. The resulting sample was finally transferred to a polypropylene vial for immediate

7

quantitative LC–MS/MS analysis.

### S.4. High Performance Liquid chromatography (HPLC)

The quantitative determination all targeted analytes was performed on an Agilent 1200 series HPLC (Agilent Technologies, Waldbronn, Germany). The analytical column used for chromatographic separations was a Zorbax Eclipse plus C<sub>18</sub> RRHD (2.1 x 100 mm, 1.8 μm) (Agilent, Palo Alto, USA) with a respective Guard Cartridge (4 μm x 3.0 mm ID) (Zorbax, Agilent, Palo Alto, USA). The column temperature was held isothermal at 25 °C. The injection volume was 10 μL. Separations were performed using a binary gradient with mobile phase consisting of water with 0.1% formic acid (A) pure CH<sub>3</sub>CN (B) with a mobile phase flow rate of 0.35 mL/min (v:v). The initial mobile phase proportion was 100 % (A). B was then linearly increased to 100 % over 8 min and held for 7 min. Initial mobile phase conditions were restored over 1.0 min and the column was allowed to equilibrate for 4 min resulting in a total run time of 20 min. Combined chromatograms of the MRM transition for the product ions for each analyte are shown in Figure S1.

### S.5. Electrospray ionization Mass spectrometry

An Agilent 6460 (Agilent Technologies, Santa Clara, CA, USA) triple quadrupole mass spectrometer with an Agilent Jet Stream electrospray ion source was used for the detection and quantitative analysis. The ions were monitored in positive and negative dynamic multiple reaction monitoring (dMRM). The ion source parameters are shown in Table S2. Table S3 contains information on the ion transitions monitored and their individual settings. Agilent MassHunter software (Version B.07.00 /Build 7.0.457.0, 2008) was used for instrument control, method validation and quantification.

### Table S2: Ion source Parameters

### **Table 2 Ion source Parameters**

| Parameter         | Value (+) | Value (-) |
|-------------------|-----------|-----------|
| Gas Temp (°C)     | 320       | 320       |
| Gas Flow (I/min)  | 10        | 10        |
| Nebulizer (psi)   | 35        | 35        |
| Sheath Gas Heater | 390       | 390       |
| Sheath Gas Flow   | 12        | 12        |
| Capillary (V)     | 4000      | 3500      |

Table 3 Monitored ion transitions and their individual instrument settings; Precursor ion (Prec Ion), product ion (PI), Fragmentor voltage (FV),

Collision Energy (CE), Retention time (RT), Retention time Window (RTW), and Polarity. For abbreviations and structure information on the target

compounds, see table S1.

For abbreviations of CECs please consult table S1. <MLOQ: below method quantification limit, n.d. = not detected, <MLOD = below method detection limit.

| Peak No | Compound Name                             | Prec lon | Ы     | RT (min) | ΔRT | Frag (V) | CE | Polarity |
|---------|-------------------------------------------|----------|-------|----------|-----|----------|----|----------|
| 1       | MEF                                       | 130      | 71    | 0.76     | 2   | 60       | 20 | +        |
| 1       | MEF                                       | 130      | 60    | 0.76     | 2   | 60       | 20 | +        |
| 2       | ATN                                       | 267.2    | 190   | 1.4      | 2   | 80       | 20 | +        |
| 2       | ATN                                       | 267.2    | 145   | 1.4      | 2   | 80       | 30 | +        |
| 3       | RAN                                       | 315.1    | 170   | 1.6      | 2   | 60       | 10 | +        |
| 3       | RAN                                       | 315.1    | 130   | 1.6      | 2   | 60       | 20 | +        |
| 4       | RAN-O                                     | 331.1    | 176   | 1.8      | 2   | 90       | 20 | +        |
| 4       | RAN-O                                     | 331.1    | 130   | 1.8      | 2   | 90       | 30 | +        |
| 5       | ACE                                       | 152      | 110   | 2        | 3   | 60       | 15 | +        |
| 5       | ACE                                       | 152      | 65.1  | 2        | 3   | 60       | 35 | +        |
| 6       | MET                                       | 172      | 128   | 2        | 2   | 60       | 10 | +        |
| 6       | MET                                       | 172      | 82    | 2        | 2   | 60       | 25 | +        |
| 7       | CAF                                       | 195      | 138   | 4        | 2   | 110      | 20 | +        |
| 7       | CAF                                       | 195      | 110   | 4        | 2   | 110      | 30 | +        |
| 8       | <sup>13</sup> C <sub>3</sub> -CAF         | 198.2    | 140.2 | 4        | 2   | 110      | 20 | +        |
| 8       | <sup>13</sup> C <sub>3</sub> -CAF         | 198.2    | 112   | 4        | 2   | 110      | 20 | +        |
| 9       | СРХ                                       | 348.1    | 174   | 4.3      | 2   | 70       | 15 | +        |
| 9       | СРХ                                       | 348.1    | 158   | 4.3      | 2   | 70       | 5  | +        |
| 9       | СРХ                                       | 348.1    | 106   | 4.3      | 2   | 70       | 20 | +        |
| 10      | <sup>2</sup> H <sub>9</sub> -TMP          | 300.3    | 264   | 4.3      | 2   | 80       | 30 | +        |
| 10      | <sup>2</sup> H <sub>9</sub> -TMP          | 300.3    | 243.1 | 4.3      | 2   | 80       | 30 | +        |
| 10      | <sup>2</sup> H <sub>9</sub> -TMP          | 300.3    | 122.9 | 4.3      | 2   | 80       | 30 | +        |
| 11      | ТМР                                       | 291.5    | 261.1 | 4.3      | 2   | 100      | 25 | +        |
| 11      | ТМР                                       | 291.5    | 123.2 | 4.3      | 2   | 100      | 25 | +        |
| 12      | ACY-SAD                                   | 293.1    | 198   | 4.4      | 2   | 100      | 20 | +        |
| 12      | ACY-SAD                                   | 293.1    | 134.2 | 4.4      | 2   | 100      | 30 | +        |
| 12      | ACY-SAD                                   | 293.1    | 65.2  | 4.4      | 2   | 100      | 35 | +        |
| 13      | ACR                                       | 180.1    | 152   | 4.5      | 2   | 70       | 60 | +        |
| 14      | CIP                                       | 332      | 288   | 4.6      | 2   | 80       | 20 | +        |
| 14      | CIP                                       | 332      | 245   | 4.6      | 2   | 80       | 30 | +        |
| 15      | MEP                                       | 268.3    | 116.2 | 5        | 2   | 70       | 20 | +        |
| 15      | MEP                                       | 268.3    | 98.1  | 5        | 2   | 70       | 20 | +        |
| 15      | MEP                                       | 268.3    | 74.1  | 5        | 2   | 70       | 20 | +        |
| 16      | <sup>2</sup> H <sub>7</sub> -MEP          | 275.3    | 191   | 5        | 2   | 100      | 20 | +        |
| 16      | <sup>2</sup> H <sub>7</sub> -MEP          | 275.3    | 121   | 5        | 2   | 100      | 20 | +        |
| 16      | <sup>2</sup> H <sub>7</sub> -MEP          | 275.3    | 105.2 | 5        | 2   | 100      | 20 | +        |
| 17      | СРА                                       | 275      | 230   | 5.3      | 2   | 60       | 10 | +        |
| 17      | СРА                                       | 275      | 167   | 5.3      | 2   | 60       | 30 | +        |
| 18      | <sup>2</sup> H <sub>5</sub> -Enrofloxacin | 365      | 347   | 5.5      | 2   | 250      | 20 | +        |

### Table S3 continue

| -        | -                                         | 1        | r           |          | r   |          |    |          |
|----------|-------------------------------------------|----------|-------------|----------|-----|----------|----|----------|
| Peak No  | Compound Name                             | Prec lon | PI          | RT (min) | ΔRT | Frag (V) | CE | Polarity |
| 18       | <sup>2</sup> H <sub>5</sub> -Enrofloxacin | 365      | 321         | 5.5      | 2   | 250      | 20 | +        |
| 18       | <sup>2</sup> H <sub>5</sub> -Enrofloxacin | 365      | 245         | 5.5      | 2   | 250      | 30 | +        |
| 19       | SUL                                       | 311      | 156.1       | 5.8      | 2   | 90       | 20 | +        |
| 19       | SUL                                       | 311      | 108         | 5.8      | 2   | 90       | 30 | +        |
| 19       | SUL                                       | 311      | 92.1        | 5.8      | 2   | 90       | 30 | +        |
| 20       | <sup>2</sup> H <sub>3</sub> - SUL         | 314.1    | 156         | 5.8      | 2   | 60       | 20 | +        |
| 20       | <sup>2</sup> H <sub>3</sub> - SUL         | 314.1    | 108         | 5.8      | 2   | 60       | 30 | +        |
| 20       | <sup>2</sup> H <sub>3</sub> - SUL         | 314.1    | 92.1        | 5.8      | 2   | 60       | 30 | +        |
| 21       | SMX                                       | 254      | 156         | 6        | 2   | 90       | 10 | +        |
| 21       | SMX                                       | 254      | 108         | 6        | 2   | 90       | 20 | +        |
| 21       | SMX                                       | 254      | 92          | 6        | 2   | 90       | 30 | +        |
| 22       | <sup>13</sup> C <sub>6</sub> -SMX         | 260      | 162         | 6        | 2   | 40       | 10 | +        |
| 22       | <sup>13</sup> C <sub>6</sub> -SMX         | 260      | 114         | 6        | 2   | 40       | 20 | +        |
| 22       | <sup>13</sup> C <sub>6</sub> -SMX         | 260      | 98          | 6        | 2   | 40       | 30 | +        |
| 23       | ACY-SMX                                   | 296.1    | 198         | 6.1      | 2   | 100      | 20 | +        |
| 23       | ACY-SMX                                   | 296.1    | 134         | 6.1      | 2   | 100      | 30 | +        |
| 23       | ACY-SMX                                   | 296.1    | 65          | 6.1      | 2   | 100      | 30 | +        |
| 24       | <sup>2</sup> H <sub>4</sub> -N-acetyl SMX | 300.1    | 201.8       | 6.1      | 2   | 100      | 20 | +        |
| 24       | <sup>2</sup> H <sub>4</sub> -N-acetyl SMX | 300.1    | 138         | 6.1      | 2   | 100      | 30 | +        |
| 24       | <sup>2</sup> H <sub>4</sub> -N-acetyl SMX | 300.1    | 69          | 6.1      | 2   | 100      | 50 | +        |
| 25       | CAR-10,11                                 | 253.1    | 236.1       | 6.19     | 2   | 90       | 10 | +        |
| 25       | CAR-10,11                                 | 253.1    | 180.1       | 6.19     | 2   | 90       | 30 | +        |
| 26       | SA                                        | 137      | 93          | 6.19     | 2   | 90       | 20 | -        |
| 26       | SA                                        | 137      | 65          | 6.19     | 2   | 90       | 35 | -        |
| 27       | CAR-3OH                                   | 253.1    | 210.1       | 6.2      | 2   | 100      | 20 | +        |
| 27       | CAR-3OH                                   | 253.1    | 167.1       | 6.2      | 2   | 100      | 30 | +        |
| 28       | PRE                                       | 361.1    | 325.1       | 6.4      | 2   | 80       | 10 | +        |
| 28       | PRE                                       | 361.1    | 146.7       | 6.4      | 2   | 80       | 30 | +        |
| 29       | IBP-OH                                    | 221.2    | 177.1       | 6.48     | 2   | 100      | 10 | -        |
| 29       | IBP-Car                                   | 235.1    | 191         | 6.5      | 2   | 100      | 0  | -        |
| 29       | IBP-Car                                   | 235.1    | 73          | 6.5      | 2   | 100      | 30 | -        |
| 30       | AMT                                       | 278.2    | 105         | 6.7      | 3   | 40       | 20 | +        |
| 30       | AMT                                       | 278.2    | 91          | 6.7      | 3   | 40       | 30 | +        |
| 31       | NOR                                       | 296.2    | 134.2       | 6.7      | 2   | 100      | 10 | +        |
| 31       | NOR                                       | 296.2    | 105         | 6.7      | 2   | 100      | 10 | +        |
| 32       | CBZ                                       | 237      | 194         | 6.8      | 2   | 70       | 15 | +        |
| 32       | CBZ                                       | 237      | 179         | 6.8      | 2   | 70       | 35 | +        |
| 33       | <sup>2</sup> H <sub>10</sub> -Car         | 247.1    | 204.1       | 6.84     | 2   | 125      | 20 | +        |
| 33       | <sup>2</sup> H <sub>10</sub> -Car         | 247.1    | 187.1       | 6.84     | 2   | 125      | 40 | +        |
| 33       | <sup>2</sup> H <sub>10</sub> -Car         | 247.1    | 174.1       | 5.84     | 2   | 125      | 50 | +        |
| 34       |                                           | 559.2    | 440.1       | 7        | 2   | 135      | 20 | +        |
| 34       |                                           | 559.2    | 292.1       | 7        | 2   | 135      | 40 | +        |
| 34       |                                           | 339.Z    | 250         | /<br>70  | 2   | 100      | 10 | -<br>-   |
| 35       | 105                                       | 423.2    | 404.9       | 7.2      | 2   | 100      | 10 | +        |
| 33       | 105                                       | 423.2    | 207         | 7.2      | 2   | 100      | 20 | т<br>    |
| 35       |                                           | 425.2    | 110         | 7.2      | 2   | 200      | 30 | +        |
| 30       |                                           | 202.2    | 01 1        | 7.4      | 2   | 80       | 20 | т<br>    |
| 30       |                                           | 102.2    | 91.1<br>110 | 7.4      | 2   | 120      | 20 | -<br>-   |
| 3/       | DEET                                      | 192      | 01          | 7.5      | 2   | 120      | 20 | +        |
| 3/       |                                           | 212      | 204         | 7.5      | 2   | 120      | 10 | т<br>    |
| 20       |                                           | 312      | 234         | 7.7      | 3   | 125      | 30 | +        |
| 20       |                                           | 310      | 1/12        | 2.7<br>2 | 2   | 100      | 10 | +        |
| 30       | FLX                                       | 310      | 117         | 8        | 2   | 100      | 20 | +        |
| 39       | WAR                                       | 307.2    | 161         | 84       | 2   | 80       | 15 | -        |
| 40       | WAR                                       | 307.2    | 117 1       | 8.4      | 2   | 80       | 30 | -        |
| 40       |                                           | 575.2    | 466.1       | 85       | 2   | 125      | 10 | +        |
| 41<br>A1 | 2011-410                                  | 575.2    | 440         | 8.5      | 2   | 125      | 30 | +        |
| - T-     |                                           |          |             |          |     |          |    |          |



Figure S1.Typical combined MRM chromatograms of the target analytes with their respective internal standards. Individual peak assignments are listed in Table S3.

### S.6. Quality control and calibration

*S.6.1. Calibration:* Matrix match and solvent matched calibration curves for targeted analytes and their calibration criteria of the method are shown in Table S4 in comparison. Calibration curves of five concentration levels (10, 20, 50, 80, and 100 ng/mL) were prepared for all isotope-labeled internal standards;<sup>13</sup>C<sub>3</sub>-CAF, <sup>2</sup>H<sub>9</sub>-Trimethoprin, <sup>2</sup>H<sub>7</sub>-Metoprolol, <sup>2</sup>H<sub>3</sub>-Sulfadoxine-d3, <sup>13</sup>C<sub>6</sub>-SMX, <sup>2</sup>H<sub>4</sub>-N-acetyl SMX, <sup>2</sup>H<sub>10</sub>-CBZ, <sup>2</sup>H<sub>10</sub>-DEET, <sup>2</sup>H<sub>15</sub>-Octocrylene and applying <sup>2</sup>H<sub>5</sub>-Enrofloxacin at concentration of 50 ng/mL as a recovery standard. The percentage recovery of internal standards was calculated based on these calibration curves.

*S.6.2. Detection limits:* The method detection limit (MDL) is defined as the minimum analyte concentration that can be detected and identified with a 99% confidence that its concentration is greater than zero <sup>1</sup>. MDL was calculated by multiplying the standard deviation of 5 spiked digestate samples at concentration of 5 and 10 ng/mL by student-t-test at the appropriate degree of freedom, the spiked samples were prepared and analysed according to the above described methods. The instrumental limit of detection (LOD) and limit of quantification (LOQ) were determined as LOD = 3\*S/M and LOQ = 10\*S/M, where S is signal standard deviation obtained by injecting solutions with a concentration of 5 ng/mL seven times, and M is the slope of the calibration curve<sup>2</sup>.

**S.6.3. Matrix effect:** Matrix effect (ME %) was estimated using the following equation, where Sm and Ss are the slope of the matrix matched and solvent matched calibration curves respectively.

$$ME\% = \left[\left(\frac{Sm}{Sm}\right) - 1\right] \times 100$$

#### $\lfloor Ss \rfloor$

Positive ME% values indicate signal enhancement and negative values indicate ion suppression by the matrix. In general, ME% values ranging

from -20% to +20% indicate acceptable matrix effect, while ME values <-20% or >+20% indicate significant matrix effects. Thus, in liquid

digestate all compounds except ranitidine, narasin, and monesin experienced a significant matrix affect as shown in Table S6. Similarly, in solid

11

digestate samples, all compounds experienced a significant matrix affect as shown except warfarin, fluoxetine and cephalexin (see table S5).

**Table 4** Matrix match and solvent matched calibration curves. For abbreviations and structure information on the target compounds, see table

S1

| Compoun<br>d | ISTD                                         | Retention<br>Time (min) | Conc. range<br>(ng/mL)<br>Solvent | R <sup>2**</sup> | Conc. range<br>(ng/mL)<br>Solid digestate | R <sup>2</sup> | Conc. range (ng/mL)<br>Liquid digestate | R <sup>2</sup> |
|--------------|----------------------------------------------|-------------------------|-----------------------------------|------------------|-------------------------------------------|----------------|-----------------------------------------|----------------|
| 20H-ATO      | <sup>2</sup> H <sub>10</sub> -DEET           | 8.5                     | 0.2-500 (10)                      | 0.993            | 0.2-500 (8)                               | 0.991          | 0.5-300(7)                              | 0.993          |
| CAR-3OH      | <sup>2</sup> H <sub>10</sub> -CBZ            | 6.2                     | 0.2-200 (7)                       | 0.997            | 0.5-500 (10)                              | 0.990          | 0.2-300 (7)                             | 0.994          |
| 50H-DCF      | <sup>2</sup> H <sub>10</sub> -DEET           | 7.7                     | 5-600 (8)                         | 0.994            | 1-500 (6)                                 | 0.992          | 10-500(5)                               | 0.990          |
| ACE          | <sup>2</sup> H <sub>10</sub> -CBZ            | 2.0                     | 0.2-200 (9)                       | 0.995            | 25-100 (5)                                | 0.979          | 0.5-500 (10)                            | 0.975          |
| ACR          | <sup>2</sup> H <sub>9</sub> -TMP             | 4.5                     | 0.2-500 (9)                       | 0.994            | 0.2-500 (9)                               | 0.996          | 0.2-500 (8)                             | 0.982          |
| AMT          | <sup>2</sup> H <sub>10</sub> -DEET           | 6.7                     | 0.2-500 (7)                       | 0.995            | 0.2-200 (7)                               | 0.994          | 0.2-500(6)                              | 0.999          |
| ATN          | <sup>13</sup> C <sub>3</sub> -CAF            | 1.4                     | 0.2-500 (10)                      | 0.996            | 1-300 (7)                                 | 0.989          | 0.2-300 (8)*                            | 0.991          |
| CAF          | <sup>13</sup> C <sub>3</sub> -CAF            | 4.0                     | 0.2-500 (9)                       | 0.994            | 0.2-500 (9)                               | 0.992          | 0.2-500 (7)                             | 0.986          |
| IBP-Car      | <sup>2</sup> H <sub>10</sub> -CBZ            | 6.5                     | 5-600 (9)*                        | 0.992            | 0.2-300 (5)                               | 0.998          | 25-500(5)                               | 0.986          |
| CAR          | <sup>2</sup> H <sub>10</sub> -CBZ            | 6.8                     | 0.2-500 (11)                      | 0.994            | 0.2-300 (7)                               | 0.992          | 0.2-500 (10)                            | 0.995          |
| CAR-10,11    | <sup>2</sup> H <sub>10</sub> -CBZ            | 6.1                     | 0.2-200 (9)                       | 0.990            | 0.2-500 (9)                               | 0.994          | 0.2-300 (7)                             | 0.997          |
| СРХ          | <sup>2</sup> H <sub>9</sub> -TMP             | 4.3                     | 1-600 (9)                         | 0.994            | 1-500 (8)                                 | 0.993          | 5-500 (7)                               | 0.984          |
| СРА          | <sup>2</sup> H <sub>3</sub> - SUL            | 5.3                     | 0.2-300 (8)                       | 0.997            | 25-600 (6)                                | 0.980          | 0.5- 500 (7)                            | 0.990          |
| CIP          | <sup>2</sup> H <sub>9</sub> -TMP             | 4.6                     | 0.2-500 (11)                      | 0.980            | 5-500 (6)                                 | 0.992          | 25-500 (5)                              | 0.996          |
| DCF          | <sup>2</sup> H <sub>10</sub> -DEET           | 9.0                     | 1-600 (8)                         | 0.993            | 25-600 (5)                                | 0.983          | 25-500 (4)*                             | 0.999          |
| DEET         | <sup>2</sup> H <sub>10</sub> -DEET           | 7.5                     | 0.2-100 (7)                       | 0.990            | 0.2-600 (10)                              | 0.995          | 0.2-500 (8)                             | 0.995          |
| FLX          | <sup>2</sup> H <sub>10</sub> -DEET           | 8.0                     | 0.2-500 (10)                      | 0.994            | 5-500 (8)                                 | 0.99           | 5-500 (5)                               | 0.990          |
| IBP          | <sup>2</sup> H <sub>10</sub> -DEET           | 5.0                     | 50-600 (6)                        | 0.992            | -                                         | -              | 25-500 (3)                              | 0.985          |
| LOS          | <sup>2</sup> H <sub>10</sub> -DEET           | 7.2                     | 0.2-200 (9)                       | 0.991            | 0.2-600 (8)                               | 0.993          | 25-500 (5)                              | 0.993          |
| MEF          | <sup>13</sup> C <sub>3</sub> -CAF            | 0.76                    | 0.2-100 (8)                       | 0.996            | 0.5-200 (6)                               | 0.995          | 0.2-300 (7)                             | 0.980          |
| MTP          | <sup>2</sup> H <sub>7</sub> -MEP             | 5.0                     | 0.2-500 (11)                      | 0.994            | 0.2-500 (7)                               | 0.994          | 5-300 (5)                               | 0.978          |
| MET          | <sup>13</sup> C <sub>3</sub> -CAF            | 2.0                     | 0.2-100 (7)                       | 0.993            | 1-200 (5)                                 | 0.999          | 0.2-300(6)                              | 0.997          |
| MON          | <sup>2</sup> H <sub>10</sub> -DEET           | 15.2                    | 0.2-600 (6)                       | 0.995            | 10-600 (5)*                               | 0.987          | 0.2-500 (8)                             | 0.999          |
| ACY-SMX      | <sup>2</sup> H <sub>4</sub> -N-acetyl<br>SMX | 6.1                     | 0.5-500 (9)                       | 0.993            | 25-500 (5)                                | 0.989          | 25-500 (4)                              | 0.996          |
| ACY-SAD      | <sup>2</sup> H <sub>7</sub> -MEP             | 4.4                     | 0.2-300 (8)                       | 0.990            | 5-600 (7)                                 | 0.992          | 5-500 (5)                               | 0.996          |
| NAR          | <sup>2</sup> H <sub>10</sub> -DEET           | 15.5                    | 0.2-100 (6)*                      | 0.994            | 0.2-200 (5)*                              | 0.986          | 1-500 (6)                               | 0.975          |
| NOR          | <sup>2</sup> H <sub>10</sub> -DEET           | 6.7                     | 1-500 (9)                         | 0.997            | 5-300 (6)                                 | 0.991          | 5-500 (6)*                              | 0.991          |
| OCR          | <sup>2</sup> H <sub>10</sub> -DEET           | 12.1                    | 0.5-500 (6)                       | 0.995            | 0.2-600 (6)                               | 0.989          | 0.2 -500 (8)                            | 0.997          |
| PRE          | <sup>2</sup> H <sub>10</sub> -DEET           | 6.4                     | 0.5-100 (7)                       | 0.987            | 25-500 (5)                                | 0.996          | 5-500(6)                                | 0.985          |
| RAN          | <sup>2</sup> H <sub>7</sub> -MEP             | 1.6                     | 0.2-500 (11)                      | 0.994            | 0.2-500(9)                                | 0.997          | 0.2-500 (8)                             | 0.993          |
| RAN_O        | <sup>13</sup> C <sub>3</sub> -CAF            | 1.9                     | 0.2-200 (9)                       | 0.992            | 0.5-600 (9)                               | 0.990          | 0.2-500 (9)                             | 0.990          |
| SUL          | <sup>2</sup> H <sub>7</sub> -MEP             | 5.8                     | 0.2-200 (9)                       | 0.993            | 5-500 (6)                                 | 0.996          | 5-500 (6)                               | 0.986          |
| SA           | <sup>2</sup> H <sub>10</sub> -DEET           | 6.19                    | 5-300 (6)                         | 0.995            | 10-600 (4)                                | 0.986          | 0.5-500 (8)*                            | 0.990          |
| SLM          | <sup>2</sup> H <sub>10</sub> -DEET           | 14.4                    | 0.2-500(5)                        | 0.991            | 25-600 (6)                                | 0.980          | 0.2-500 (8)                             | 0.989          |
| SMV          | <sup>2</sup> H <sub>10</sub> -DEET           | 10.8                    | 0.2-200 (6)                       | 0.988            | 1-200 (5)*                                | 0.993          | 10-500 (4)                              | 0.978          |
| SMX          | <sup>2</sup> H <sub>4</sub> -N-acetyl<br>SMX | 6.0                     | 0.2-500 (11)                      | 0.994            | 5-500 (6)                                 | 0.995          | 5-500 (6)                               | 0.980          |
| ТСРР         | <sup>2</sup> H <sub>10</sub> -DEET           | 8.5                     | 0.2-500 (11)                      | 0.990            | 0.5-500 (7)                               | 0.995          | 0.2-500(6)                              | 0.992          |
| ТМР          | <sup>2</sup> H <sub>9</sub> -TMP             | 4.3                     | 0.2-500 (10)                      | 0.991            | 1-500 (10)                                | 0.991          | 5-500 (7)                               | 0.987          |
| WAR          | <sup>2</sup> H <sub>10</sub> -DEET           | 8.4                     | 0.5-500 (10)                      | 0.982            | 5-500 (6)                                 | 0.991          | 1-500(6)                                | 0.990          |

\*Quadratic

\*\*R<sup>2</sup> = Regression coefficient

**Table 5** Matrix effect (ME %) values are color-coded (red: ion suppression, blue: signal enhancement, blank: no matrix effect). For abbreviations and structure information on the target compounds, see table S1.

| Compound  | ME % in liquid Digestate | ME% in solid Digestate |
|-----------|--------------------------|------------------------|
| MEF       | -68                      | -59                    |
| ATN       | -55                      | -88                    |
| RAN       | 0                        | -59                    |
| RAN-O     | -33                      | -76                    |
| ACE       | -93                      | -94                    |
| MET       | 29                       | -72                    |
| CAF       | -61                      | -81                    |
| СРХ       | 98                       | 224                    |
| ACY-SAD   | -62                      | -52                    |
| ТМР       | -78                      | -87                    |
| ACR       | -74                      | -70                    |
| CIP       | -95                      | -79                    |
| MEP       | -66                      | -69                    |
| SUL       | -93                      | -88                    |
| SMX       | -87                      | -79                    |
| СРА       | -60                      | -80                    |
| ACY-SMX   | -94                      | -77                    |
| NOR       | -94                      | -80                    |
| SA        | -71                      | -28                    |
| CAR-10,11 | -81                      | -74                    |
| CAR-3OH   | -85                      | -68                    |
| PRE       | -98                      | -87                    |
| IBP-Car   | -80                      | -55                    |
| IBP       | -100                     | -100                   |
| CAR       | -68                      | -64                    |
| IBP-OH    | -85                      | -60                    |
| AMT       | -94                      | -33                    |
| FLX       | -98                      | 0.6                    |
| LOS       | -86                      | -75                    |
| DEET      | -70                      | -60                    |
| 50H-DCF   | -85                      | -56                    |
| ATO       | -100                     | -100                   |
| WAR       | -23                      | 4                      |
| 20H-ATO   | -67                      | -25                    |
| ТСРР      | -79                      | -85                    |
| DCF       | -26                      | -45                    |
| SMV       | -91                      | -78                    |
| OCR       | -99                      | -98                    |
| SLM       | 79                       | -75                    |
| MON       | 7                        | -40                    |
| NAR       | 2                        | -57                    |

The apparent recoveries for all analytes were also calculated using the following equation:

```
Apparent Recovery \% = 100 * \frac{\text{Calculated concentration of spiked sample-Calculated concentration of matrix blank}}{\text{Spiked concentration}}
```

A spiked sample is prepared by addition of a known concentration of native and internal standards before extraction to the matrix blank material before extraction and then the spiked sample was treated as real sample, and the concentration of the analytes in the spiked samples and blank was using matrix matched calibration graphs.

### S.7. Method validation and quality control

The complete method for sample preparation procedure and quantitative analysis was subjected for comprehensive validation before the method was applied for quantitative analysis. The linear quantification range of the analytical instrument was confirmed with matrix-matched calibration.

#### Method validation: Extraction and clean-up

For complex matrices, such as biogas digestates, matrix matched calibration is mandatory in addition to efficient clean-up procedures as basis for high quality quantification of organic contaminants. In our studies a Hydrophilic – Lipophilic Balanced (HLB) solid phase extraction method was applied since this material proved to be well-suitable for sample preparation for multi-compound quantification in such complex matrices <sup>3</sup>. Sodium ethylene diamine tetra acetate-acetic (Na<sub>2</sub>EDTA) was added during extraction in order to bind metals that may be present in the sample extract or adsorbed onto the surface of the sorbent <sup>4</sup>. Confirmed by earlier studies, free metal traces may covalently bind to target organic contaminants and, thus, significantly reduce their recoveries for quantitative analysis<sup>5, 6</sup>.

As a part of the extraction method optimization, Oasis PRIME HLB was tested in two different modes, namely two- step clean-up (*pass-through*) and conventional three- step clean-up (*Catch and Release*) for solid and liquid digestate respectively. Furthermore, the effect of

sample size and acidification on matrix effect and recovery of target compounds were investigated for the optimum extraction of the target compounds. Based on the low matrix effect and good recovery of the target compounds, the two extraction methods (figure S2) were selected as optimal for the extraction of target compounds from solid and liquid digestate samples. The finally chosen method was based on 1g solid wet weight (ww) and 2 mL liquid samples, respectively, prepared for SPE with OASIS PRIME HLB as stationary phase. Please refer to the detailed description of extraction methods in section S3. The finally applied sample extraction and preparation methods for quantitative analysis are summarised in the flow chart in Figure S2.



### Analytical method validation and quality control

The ultra-trace quantification method is based on high-performance liquid chromatography coupled to a triple-quadrupole mass selective detector with electrospray ionization (HPLC-ESI-MS/MS). This analytical technology is a well-established, validated and considered as a versatile scientific tool for the quantitative trace level detection of polar environmental contaminants. However, for the HPLC-ESI-MS/MS quantification method, non-linear matrix effects (ME) are often reported. MEs are usually attributed to co-eluting residual matrix components that affect the ionization efficiency of the target compounds. Typically, this results in either non-linear suppression or enhancement of target compound signal<sup>7</sup>. MEs are generally not reproducible or repeatable between various sample batches or even replicates of the same sample and, thus, compromise the quantitative analysis if not appropriately assessed <sup>8, 9</sup>. Therefore, the evaluation of MEs was also integrated in the quality control protocol of this study. In fact, for the present applied methods, considerable MEs were found for the quantification of the majority of the CECs. Thus, matrix-matched calibration was conducted using an experimental digestate prepared from a representative mixture of substrates in order to confirm the linear range of the method for reliable quantification (Table S4). For details on the evaluation, please refer to the detailed description in section S6.

All target analytes were separated in single chromatographic runs within a total analysis time of 20 min as depicted in Figure S1 (HPLC/MSxMS quantification). Method detection limit (MDL) in liquid and solid digestate, instrumental limit of detection (LOD), and instrumental lower limit of quantification (LOQ) values are summarised in <u>Table S6</u>. Instrument limits of quantification ranged from 0.2 pg/ mL<sup>-1</sup> to 3.0 ng/mL<sup>-1</sup>. For liquid digestate, MDL values for most compounds ranged from 0.25 to 20.55 ng/g while for solid digestate MDL values for most compounds are in the range 0.09 to 49.05 ng/g. The procedure for recovery calculation is summarised in Section S6 in the supplementary information. All individual target CEC recoveries are listed in Table S7. In total, 28 compounds in liquid digestates and 24 compounds in solid digestates showed satisfying recoveries (42 – 120%) in the initial method

validation. In the following spiking experiments, Atorvastatin, Ciprofloxacin (CIP), Sulfamethoxazole, N-acetyl sulfamethoxazole, Salicylic acid, Fluoxetine, Simvastatin, and Narasin were, however, not recovered in liquid samples and were therefore excluded from further quantitative analysis. For solid samples, CIP and Ranitidine N-oxide were not recovered from spiked solid samples and were, thus, also excluded from further quantitative analysis. All compounds which met the quality control criteria for final quantification in both liquid and solid digestate samples are marked orange in Table S7. Sample specific recovery rates for all internal standards (ISTD) from liquid and solid digestate samples were calculated applying known concentrations of <sup>2</sup>H<sub>5</sub>-enrofloxacin as a recovery standard. The recovery results are summarised in Table S7. The isotope labelled standards <sup>2</sup>H<sub>3</sub>-Sulfadoxine, <sup>13</sup>C<sub>6</sub>-Sulfamethoxazole and  ${}^{2}H_{10}$ -Octocrylene were excluded as internal standards for quantification since they were lost or showed low recovery rates during sample preparation and extraction (table S8). Therefore, Sulfadoxine, Sulfamethoxazole and Octocrylene were quantified in all digestate samples using the alternative internal standards as <sup>2</sup>H<sub>7</sub>-Metoprolol, 2H4-N-acetyl SMX and <sup>2</sup>H<sub>10</sub>-DEET, respectively.

**Table 6:** Method detection limit (MDL), instrumental limit of detection (LOD), and limit ofquantification (LOQ). For abbreviations and structure information on the target compounds,

| Compound  | MDL (ng/g) in Solid | MDL (ng/mL) in   | LOD     | LOQ     |
|-----------|---------------------|------------------|---------|---------|
|           | Digestate           | Liquid Digestate | (pg/µL) | (pg/µL) |
| MEF       | 4.95                | 0.45             | 0.01    | 0.04    |
| ATN       | 2.5                 | 2.8              | 0.01    | 0.04    |
| RAN       | 1.35                | 1.1              | 0.01    | 0.03    |
| RAN-O     | 0.04                | 0.15             | 0.02    | 0.08    |
| ACE       | 44.75               | 1.3              | 0.007   | 0.02    |
| MET       | 1.1                 | 1.05             | 0.05    | 0.17    |
| CAF       | 1.2                 | 0.7              | 0.005   | 0.02    |
| СРХ       | 0.90                | 0.20             | 0.009   | 0.03    |
| ACY-SAD   | 0.95                | 1.25             | 0.01    | 0.05    |
| TRM       | 1.80                | 0.40             | 0.92    | 3.00    |
| ACR       | 2.15                | 0.65             | 0.005   | 0.01    |
| CIP       | 0.80                | 0.70             | 0.03    | 0.12    |
| MEP       | 7.05                | 1.20             | 0.01    | 0.06    |
| SUL       | 2.2                 | 2.10             | 0.003   | 0.01    |
| SMX       | 1.45                | 8.15             | 0.01    | 0.02    |
| СРА       | 0.09                | 7,00             | 0.01    | 0.05    |
| ACY-SMX   | 9.10                | 2.60             | 0.01    | 0.05    |
| NOR       | 11.3                | 13.35            | 0.01    | 0.05    |
| SAA       | 70.3                | 8.55             | 0.03    | 0.09    |
| CAR-10,11 | 1.20                | 0.32             | 0.01    | 0.02    |
| CAR-3OH   | 1.25                | 0.70             | 0.02    | 0.08    |
| PRE       | 16.90               | 20.55            | 0.01    | 0.04    |
| IBP-Car   | 18.75               | 3.45             | 0.03    | 0.12    |
| IBP       | 66.40               | 66.40            | 17.5    | 58.6    |
| CAR       | 3,00                | 0.745            | 0.03    | 0.11    |
| IBP-OH    | 128.55              | 118.25           | 0.07    | 0.24    |
| AMT       | 5.90                | 0.62             | 0.01    | 0.04    |
| FLX       | 2.30                | 5.80             | 0.04    | 0.16    |
| LOS       | 20.45               | 1.15             | 0.003   | 0.01    |
| DEET      | 1.10                | 0.25             | 0.01    | 0.05    |
| 50H-DCF   | 49.05               | 2,00             | 0.01    | 0.05    |
| ATO       | 12.15               | 221.95           | 0.005   | 0.02    |
| WAR       | 3.60                | 0.45             | 0.06    | 0.21    |
| OH-ATO    | 57.4                | 0.60             | 0.01    | 0.03    |
| ТСРР      | 97.5                | 7.45             | 0.01    | 0.03    |
| DCF       | 24.7                | 3.60             | 0.07    | 0.23    |
| SMV       | 4.90                | 0.60             | 0.004   | 0.01    |
| OCR       | 62.25               | 10.10            | 0.004   | 0.013   |
| SLM       | 0.12                | 0.85             | 0.01    | 0.03    |
| MON       | 0.35                | 3.40             | 0.02    | 0.06    |
| NAR       | 0.13                | 7.95             | 0.25    | 0.85    |

see table S1

**Table 7.** Recovery rates for all target compounds determined by repeated spiking of liquid and solid digestatesample. RSD = Relative standard deviation. For abbreviations and structure information on the targetcompounds, see table S1.

|                            | Recovery from liquid ± | RSD (%, n = 6) | Recovery from solid ± RSD (%, n = 6) |  |  |
|----------------------------|------------------------|----------------|--------------------------------------|--|--|
| Compound/<br>concentration | 25 ng/g                | 100 ng/g       | 100 ng/g                             |  |  |
| Metformin                  | 5.7±22.0               | 6.6±19.1       | 83.6±13.9                            |  |  |
| Atenolol                   | 83.8±11.8              | 84.7±15.0      | 82.4±15.0                            |  |  |
| Ranitidine                 | 48.3±9.9               | 77.6±14.5      | 75.5±9.4                             |  |  |
| Ranitidine-N-oxide         | 2.7±13.8               | 5.10±10.0      | 0.2±109.9                            |  |  |
| Acetaminophen              | 66.2±8.8               | 25.1±21.8      | 136.8±7.8                            |  |  |
| Metronidazole              | 88.2±14.4              | 96.7±15.0      | 78.6±14.8                            |  |  |
| Caffeine                   | 76.5±9.8               | 97.8±3.7       | 119.8±13.7                           |  |  |
| Cephalexin                 | 2.0±33.5               | 1.7±8.5        | 42.5±3.6                             |  |  |
| N-acetyl sulfadiazine      | 2.5±138                | 11.7±29.8      | 96.1±14.8                            |  |  |
| Trimethoprim               | 75.6±14.5              | 88.8±11.4      | 68.9±10.5                            |  |  |
| Acridine                   | 68.5±16.5              | 79.4±22.4      | 59.9±14.2                            |  |  |
| Metoprolol                 | 80.5±7.7               | 98.1±12.9      | 99.6±13.1                            |  |  |
| Sulfadoxine                | 83.0±11.2              | 89.5±12.5      | 114.0±13.2                           |  |  |
| Chlorphenamine             | 5.9±42.2               | 14.1±47.6      | 2.6±110.2                            |  |  |
| Norfluoxetine HCL          | 54.2±18.9              | 3.23±31.1      | 108.4±15.0                           |  |  |
| CBZ-10,11-epoxide          | 85.2±7.2               | 89.3±13.3      | 96.8±14.0                            |  |  |
| 3-hydroxy<br>carbamazepine | 83.2±9.5               | 87.4±14.1      | 86.8±14.0                            |  |  |
| Prednisolone               | 194.9±7.2              | 93.2±12.2      | 65.1±15.6                            |  |  |
| Carboxy-ibuprofen          | 42.2±1.3               | 7.3±55.5       | 138.4±14.5                           |  |  |
| carbamazepine              | 86.8±5.7               | 93.5±12.7      | 94.6±12.3                            |  |  |
| Ibuprofen                  | 116.6±17.3             | 102.0±29       | -                                    |  |  |

| Compound                     | Recovery from | n liquid ± RSD (%, n = 6) | Recovery from solid ± RSD (%, n = 6) |  |  |
|------------------------------|---------------|---------------------------|--------------------------------------|--|--|
| Compound                     | 25 ng/g       | 100 ng/g                  | 100 ng/g                             |  |  |
| 2-hydroxy ibuprofen          | 156.7±96.2    | 91.5±38.7                 | -                                    |  |  |
| Amitriptyline                | 42.4±16.8     | 58.3±17.8                 | 44.8±16.8                            |  |  |
| Losartan                     | 58.3±9.9      | 89.4±15.0                 | 121.6±14.7                           |  |  |
| DEET                         | 74.0±14.1     | 90.3±11.11                | 82.2±11.9                            |  |  |
| 5-hydroxy diclofenac         | 28.2±15.0     | 57.7±12.1                 | 138.8±12.0                           |  |  |
| WAR                          | 67.1±13.5     | 68.8±14.4                 | 36.2±51.8                            |  |  |
| 2-hydroxy<br>Atorvastatin    | 31.3±15.6     | 47.8±9.5                  | 109.4±17.1                           |  |  |
| ТСРР                         | 67.2±7.3      | 93.1±14.9                 | 108.6±16.4                           |  |  |
| Diclofenac                   | 74.5±11.1     | 87.4±8.7                  | 24.6±33.7                            |  |  |
| Octocrylene                  | 44.6±29.7     | 43.4±14.9                 | 50.4±36.9                            |  |  |
| Salinomycin                  | 39.4±23.4     | 118.8±17.1                | 19.2±10.8                            |  |  |
| Monesin                      | 81.1±11.0     | 92.3±4.0                  | 10.7±14.9                            |  |  |
| Narasin                      | 51.7±4.7      | 83.1±10.9                 | 18.4±13.3                            |  |  |
| Sulfamethoxazole             | -             | -                         | 108.8±13.4                           |  |  |
| N-acetyl<br>sulfamethoxazole | -             | -                         | 87.4±13.5                            |  |  |
| Salicylic acid               | -             | -                         | 12.4±308                             |  |  |
| Fluoxetine                   | -             | -                         | 13.8±60.3                            |  |  |

**Table 8** Sample specific recovery rates of internal standards from liquid and solid digestatesamples calculated with solvent matched calibration curves using  ${}^{2}H_{5}$ -Enrofloxacin as arecovery standard. For abbreviations and structure information on the target compounds, seetable S1

| Compounds                                 | Average total<br>recovery ±RSTD<br>(%) | Average total recovery<br>±RSTD (%) |
|-------------------------------------------|----------------------------------------|-------------------------------------|
| <sup>13</sup> C <sub>3</sub> -CAF         | 63.1±19.6                              | 52.3±9.0                            |
| <sup>2</sup> H9-Trimethoprin              | 207.8±7.4                              | 77.5±15.4                           |
| <sup>2</sup> H <sub>7</sub> -Metoprolol   | 78.0±18.8                              | 61.6±5.8                            |
| <sup>2</sup> H <sub>3</sub> -Sulfadoxine  | -                                      | -                                   |
| <sup>13</sup> C <sub>6</sub> -SMX         | 9.2±67.5                               | 31.49±5.4                           |
| <sup>2</sup> H <sub>4</sub> -N-acetyl SMX | 109.9±18.6                             | 97.0±25.1                           |
| <sup>2</sup> H <sub>10</sub> -CBZ         | 60.2±42                                | 15.9±17.7                           |
| <sup>2</sup> H <sub>10</sub> -DEET        | 108.13±30.4                            | 55.5±16.6                           |
| <sup>2</sup> H <sub>15</sub> -Octocrylene | -                                      | -                                   |

- : not detected

## Table 9 CEC levels in Liquid digestate $[\mu g/L]$

| Station                 | L <sub>(L)</sub>                                                                                                                     | l <sub>sub</sub> | F <sub>(L)</sub>                                                                            | I <sub>(L)</sub>                                                                                            | l <sub>dig</sub>                                                | C <sub>(L)</sub> | E <sub>(L)</sub> | G <sub>(L)</sub> | A <sub>(L)</sub> |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|------------------|------------------|------------------|
|                         | (avg±std)                                                                                                                            | (avg±std)        | (avg±std)                                                                                   | (avg±std)                                                                                                   | (avg±std)                                                       | (avg±std)        | (avg±std)        | (avg±std)        | (avg±std)        |
| Atenolol                | ND                                                                                                                                   | ND               | ND                                                                                          | ND                                                                                                          | ND                                                              | 0.34±0.48        | 0.60±0.11        | 2.2±0.01         | ND               |
| Acetaminophen           | 6.4±1.1                                                                                                                              | 27.4±4.8         | 58.6±6.2                                                                                    | 2.5±0.7                                                                                                     | 5.5±1.2                                                         | 5.1±0.6          | 4.1±0.7          | ND               | 8.9±0.9          |
| Caffeine                | 2.1±0.02                                                                                                                             | 10.0±0.85        | ND                                                                                          | 0.6±0.85                                                                                                    | ND                                                              | 5.5±0.15         | 1.25±0.1         | 3.0±0.90         | 2.3±0.03         |
| Acridine                | 0.06±0.0001                                                                                                                          | 0.051±0.001      | 0.06±0.0003                                                                                 | 0.35±0.10                                                                                                   | 0.03±0.001                                                      | 0.05±0.01        | 0.14±0.02        | 0.25±0.03        | 0.05±0.01        |
| Metoprolol              | 6.2±0.13                                                                                                                             | ND               | 4.9±0.15                                                                                    | 10.05±1.0                                                                                                   | 2.4±0.22                                                        | 5.6±0.22         | 10.3±0.2         | 10.7±0.1         | 13.3±1.3         |
| Sulfadoxine             | ND                                                                                                                                   | ND               | ND                                                                                          | ND                                                                                                          | ND                                                              | 1.5±0.4          | ND               | ND               | ND               |
| 3-hydroxy carbamazepine | ND                                                                                                                                   | ND               | 0.11±0.02                                                                                   | 0.13±0.005                                                                                                  | 0.12±0.04                                                       | ND               | ND               | ND               | 0.14±0.05        |
| Prednisolone            | - <loq< td=""><td>ND</td><td><loq< td=""><td>ND</td><td>ND</td><td>16.4±2.5</td><td>ND</td><td>ND</td><td>ND</td></loq<></td></loq<> | ND               | <loq< td=""><td>ND</td><td>ND</td><td>16.4±2.5</td><td>ND</td><td>ND</td><td>ND</td></loq<> | ND                                                                                                          | ND                                                              | 16.4±2.5         | ND               | ND               | ND               |
| Carboxy-ibuprofen       | ND                                                                                                                                   | 4.11±0.14        | <loq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></loq<>       | ND                                                                                                          | ND                                                              | ND               | ND               | ND               | ND               |
| ibuprofen               | ND                                                                                                                                   | ND               | ND                                                                                          | ND                                                                                                          | ND                                                              | ND               | 36±51            | ND               | 26.7±30.5        |
| Carbamazepine           | 3.5±0.10                                                                                                                             | 0.07±0.03        | 1.85±0.01                                                                                   | 4.3±0.45                                                                                                    | 0.16±0.05                                                       | 1.55±0.05        | 1.5±0.1          | 3.2±0.3          | 5.0±0.06         |
| Amytriptyline           | ND                                                                                                                                   | ND               | 0.60±0.05                                                                                   | 5.0±4.5                                                                                                     | ND                                                              | 1.4±0.25         | 1.4±0.60         | ND               | 1.0±0.0005       |
| Losartan                | 5.3±0.06                                                                                                                             | ND               | 6.3±0.05                                                                                    | 10.5±0.5                                                                                                    | 7.7±0.03                                                        | 6.0±0.04         | 5.5±0.1          | 5.6±0.05         | 8.15±0.1         |
| DEET                    | 8.50±0.45                                                                                                                            | 0.35±0.06        | 0.045±0.06                                                                                  | ND                                                                                                          | 0.60±0.15                                                       | 10.2±0.5         | 19.1±0.5         | 5.2±0.15         | 2.2±0.15         |
| 5-hydroxy DCF           | ND                                                                                                                                   | ND               | 5.6±0.3                                                                                     | 6.5±1.7                                                                                                     | ND                                                              | ND               | ND               | ND               | 3.2±0.7          |
| 2-hydroxy Atorvastatin  | ND                                                                                                                                   | ND               | 0.65±0.07                                                                                   | 3.6±1.6                                                                                                     | ND                                                              | ND               | ND               | 0.17±0.001       | 0.65±0.01        |
| ТСРР                    | 12.5±0.55                                                                                                                            | 2.0±0.08         | 3.0±0.15                                                                                    | <loq< td=""><td>2.9±1.05</td><td>1.25±0.20</td><td>40.6±0.15</td><td>16.3±0.4</td><td>16.4±0.96</td></loq<> | 2.9±1.05                                                        | 1.25±0.20        | 40.6±0.15        | 16.3±0.4         | 16.4±0.96        |
| Diclofenac              | 5.0±0.35                                                                                                                             | ND               | 4.35±0.04                                                                                   | 3.5±0.4                                                                                                     | 2.2±0.17                                                        | 5.3±0.3          | 9.2±0.1          | 5.7±3.8          | 3.2±0.05         |
| Octocrylene             | 25.8±1.3                                                                                                                             | 4.5±5.4          | 25.5±11                                                                                     | 146.6±8.0                                                                                                   | 6.2±1.45                                                        | 71.0±5.0         | 224±113          | 44.8±6.8         | 19.3±8.4         |
| Salinomycin             | ND                                                                                                                                   | ND               | ND                                                                                          | ND                                                                                                          | <loq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td></loq<> | ND               | ND               | ND               | ND               |
| Monesin                 | 0.050±0.005                                                                                                                          | ND               | ND                                                                                          | ND                                                                                                          | ND                                                              | ND               | ND               | ND               | ND               |
| SUM CEC                 | 75.1                                                                                                                                 | 25.8             | 114.4                                                                                       | 193.6                                                                                                       | 22.3                                                            | 131.1            | 353.6            | 97.1             | 110.3            |

# Table 10 CEC levels in solid digestate samples [ng/g ww]

| Station       | D <sub>(S)</sub>                                                                                                                                                                                                                                | K (s)                                                                                                                                                                                                               | A (S)     | E <sub>(S)</sub>                                                                                                                                                       | I <sub>(S)</sub>                                                                                                                           | B <sub>(S)</sub> | L <sub>(S)</sub>                                                                             | F <sub>(S)</sub>                                                 | H (s)                                | J <sub>(S)</sub> |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|------------------|
|               | (avg±std)                                                                                                                                                                                                                                       | (avg±std)                                                                                                                                                                                                           | (avg±std) | (avg±std)                                                                                                                                                              | (avg±std)                                                                                                                                  | (avg±std)        | (avg±std)                                                                                    | (avg±std)                                                        | (avg±std)                            | (avg±std)        |
| Ranitidine    | 15.8±1.4                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                  | ND        | ND                                                                                                                                                                     | ND                                                                                                                                         | ND               | ND                                                                                           | ND                                                               | ND                                   | ND               |
| Caffeine      | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | 54.3±5.3  | 29.7±5.1                                                                                                                                                               | ND                                                                                                                                         | ND               | 208.3±8.2                                                                                    | ND                                                               | ND                                   | ND               |
| Acridine      | 3.8±0.34                                                                                                                                                                                                                                        | 15.3±1.1                                                                                                                                                                                                            | 8.8±0.9   | ND                                                                                                                                                                     | ND                                                                                                                                         | 7.2±0.7          | 3.1±0.02                                                                                     | 2.5±0.6                                                          | 5.1±4.6                              | 8-0±5.4          |
| Metoprolol    | 36.1±0.5                                                                                                                                                                                                                                        | 100.1±2.6                                                                                                                                                                                                           | 74.8±12.2 | 48.4±2.1                                                                                                                                                               | 44.5±8.7                                                                                                                                   | 32.2±4.9         | 21.6±2.0                                                                                     | 14.0±0.8                                                         | 17.2±9.1                             | 58.4±0.5         |
| Prednisolone  | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | ND        | <loq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></loq<>                                                                                  | ND                                                                                                                                         | ND               | ND                                                                                           | ND                                                               | ND                                   | ND               |
| Carboxy-IBP   | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | ND        | ND                                                                                                                                                                     | ND                                                                                                                                         | ND               | ND                                                                                           | <loq< td=""><td>ND</td><td>ND</td></loq<>                        | ND                                   | ND               |
| Carbamazepine | 62.8±0.4                                                                                                                                                                                                                                        | 89.9±6.3                                                                                                                                                                                                            | 65.0±0.7  | 7.1±2.3                                                                                                                                                                | 57.5±4.0                                                                                                                                   | 53.7±3.8         | 6.9±0.33                                                                                     | 6.0±1.8                                                          | 6.7±0.12                             | 35.7±2.7         |
| Amitriptyline | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | 52.8±74.7 | 81.1±1.4                                                                                                                                                               | ND                                                                                                                                         | 131.7±15.3       | ND                                                                                           | ND                                                               | ND                                   | ND               |
| Losartan      | 15.7±9.5                                                                                                                                                                                                                                        | 46.6±22.0                                                                                                                                                                                                           | 60.48±5.5 | 0.5±0.7                                                                                                                                                                | 71.5±2.2                                                                                                                                   | 55.12±3.0        | ND                                                                                           | 8.3±1.2                                                          | 76.5±65.8                            | 50±33            |
| DEET          | <loq< td=""><td><loq< td=""><td>11.8±1.7</td><td><loq< td=""><td><loq< td=""><td>1.07±0.05</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.6±0.12</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td>11.8±1.7</td><td><loq< td=""><td><loq< td=""><td>1.07±0.05</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.6±0.12</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | 11.8±1.7  | <loq< td=""><td><loq< td=""><td>1.07±0.05</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.6±0.12</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td>1.07±0.05</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1.6±0.12</td></loq<></td></loq<></td></loq<></td></loq<> | 1.07±0.05        | <loq< td=""><td><loq< td=""><td><loq< td=""><td>1.6±0.12</td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td>1.6±0.12</td></loq<></td></loq<> | <loq< td=""><td>1.6±0.12</td></loq<> | 1.6±0.12         |
| 5-hydroxy DCF | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | ND        | ND                                                                                                                                                                     | <loq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></loq<>                                                                 | ND               | ND                                                                                           | ND                                                               | ND                                   | ND               |
| Atorvastatin  | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | ND        | ND                                                                                                                                                                     | >500                                                                                                                                       | ND               | ND                                                                                           | >500                                                             | ND                                   | ND               |
| 2-hydroxy     | 45.1±6.0                                                                                                                                                                                                                                        | 187.6±7.1                                                                                                                                                                                                           | 130±118   | <loq< td=""><td>201±26</td><td>29.7±1.9</td><td><loq< td=""><td>58.5±2.5</td><td>8.7±11.6</td><td>17.5±20.1</td></loq<></td></loq<>                                    | 201±26                                                                                                                                     | 29.7±1.9         | <loq< td=""><td>58.5±2.5</td><td>8.7±11.6</td><td>17.5±20.1</td></loq<>                      | 58.5±2.5                                                         | 8.7±11.6                             | 17.5±20.1        |
| Atorvastatin  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |           |                                                                                                                                                                        |                                                                                                                                            |                  |                                                                                              |                                                                  |                                      |                  |
| ТСРР          | 238.5±88.9                                                                                                                                                                                                                                      | 304±102                                                                                                                                                                                                             | 475 ±135  | >500                                                                                                                                                                   | 15.2±4.0                                                                                                                                   | >500             | 463.2±36.5                                                                                   | 105.7±12.5                                                       | 33.6±4.3                             | 15.3±21.7        |
| Diclofenac    | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | ND        | ND                                                                                                                                                                     | ND                                                                                                                                         | ND               | 84.0±2.3                                                                                     | ND                                                               | ND                                   | ND               |
| Octocrylene   | ND                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                  | 260±368   | >600                                                                                                                                                                   | <loq< td=""><td>&gt;600</td><td>ND</td><td>ND</td><td>466±659</td><td>107±152</td></loq<>                                                  | >600             | ND                                                                                           | ND                                                               | 466±659                              | 107±152          |
| SUM CEC       | 417.4                                                                                                                                                                                                                                           | 743.4                                                                                                                                                                                                               | 1202.9    | 1266.8                                                                                                                                                                 | 889.7                                                                                                                                      | 1410.7           | 849.3                                                                                        | 691.3                                                            | 613.8                                | 614              |

### Table S11. Polymer used in biogas plants

| Biogas plant   | Polymer (Nature)        | Amount                      | Added at which point        |
|----------------|-------------------------|-----------------------------|-----------------------------|
| F              | FLOPAM™ FO 4240,        | 2-4 kg / 1000 kg digestate  | Before centrifugation       |
|                | (cationic)              |                             |                             |
| E              | long chained (cationic) | 7-8 kg / 1000 kg digestate  | Before centrifugation       |
| D              | Zetag 8185 (cationic)   | 3.35 kg Dry matter polymer  | Before pressing in a filter |
|                |                         | / 1000 kg digestate         | press                       |
|                |                         |                             |                             |
| А              | Zetag 7563 (cationic)   | 17 tonnes / 40.000 tonnes   | Before centrifugation       |
|                |                         | digestate (annual amout)    |                             |
| B <sup>1</sup> | CC FLOC D 6144 K,       | At dewatering: Ca. 8 kg     | At centrifugation           |
|                | (cationic)              | polymer / 1000 kg digestate |                             |
|                |                         | At thickening: 4 kg polymer |                             |
|                |                         | / 1000 kg digestate         |                             |
|                |                         |                             |                             |
| Н              | Zetag 7563 (cationic)   | 5-6 kg / 100 kg digestate   | At centrifugation           |
| K <sup>2</sup> | Zetag 8147 (cationic) – | 10 kg / tonnes of dry       |                             |
|                | at "pre dewatering"     | matter                      |                             |
|                | Zetag 8180 (cationic) – | 10 kg / tonnes of dry       |                             |
|                | at "end dewatering"     | matter                      |                             |
| J              | Zetag 8125 (cationic)   | 6.5-7.2 kg / 1000 kg        | Before centrifugation       |
|                |                         | digestate                   |                             |
| 1              | Zetag 7563 (cationic)   | 2-3 kg / 1000 kg digestate  | Before centrifugation       |

<sup>1</sup> In addition, PRAESTOL K 144 L (cationic liquid polymer) is used as a lubricant in pipes to transport dewatered excreted digestate via pumps into digestate silos.

 $^{\rm 2}$  K plant uses polymer at two steps.

 Table 12. Literature comparison of concentration levels for selected CECs in related matrices.

| Sample type (country of        | CAF                                                                                                                          | CAR                                                                           | DCF                                                                        | ТСРР                                                            | ОС                                                   | AMT                                           | LOS     | Ref.  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------|-------|
| origin)                        | (ng/g)                                                                                                                       | (ng/g)                                                                        | (ng/g)                                                                     | (ng/g)                                                          | (ng/g)                                               | (ng/g)                                        | (ng/g)  |       |
| Feather meal intended as       | <6.0 - 201                                                                                                                   |                                                                               |                                                                            |                                                                 |                                                      |                                               |         | 10    |
| fertilizer (USA)               |                                                                                                                              |                                                                               |                                                                            |                                                                 |                                                      |                                               |         |       |
| Feather meal intended as       | 59.6 - 153                                                                                                                   |                                                                               |                                                                            |                                                                 |                                                      |                                               |         | 10    |
| fertilizer (China)             |                                                                                                                              |                                                                               |                                                                            |                                                                 |                                                      |                                               |         |       |
| Sewage sludge (Spain)          | <mloq-74< td=""><td>12-42</td><td><mloq-83< td=""><td></td><td></td><td></td><td></td><td>11</td></mloq-83<></td></mloq-74<> | 12-42                                                                         | <mloq-83< td=""><td></td><td></td><td></td><td></td><td>11</td></mloq-83<> |                                                                 |                                                      |                                               |         | 11    |
| Fish fillet (USA)              |                                                                                                                              | <mdl-< td=""><td></td><td></td><td></td><td></td><td></td><td>12</td></mdl-<> |                                                                            |                                                                 |                                                      |                                               |         | 12    |
|                                |                                                                                                                              | 0.60                                                                          |                                                                            |                                                                 |                                                      |                                               |         |       |
| Sewage sludge (Spain)          |                                                                                                                              |                                                                               |                                                                            | 429-912                                                         |                                                      |                                               |         | 13    |
| Sewage sludge                  |                                                                                                                              |                                                                               |                                                                            |                                                                 | 1060-9170                                            |                                               |         | 14    |
| (Catalonia, Spain)             |                                                                                                                              |                                                                               |                                                                            |                                                                 |                                                      |                                               |         |       |
| US Herring gull eggs (Larus    |                                                                                                                              |                                                                               |                                                                            | <mloq td="" –<=""><td></td><td></td><td></td><td>15</td></mloq> |                                                      |                                               |         | 15    |
| argentatus)                    |                                                                                                                              |                                                                               |                                                                            | 4.1                                                             |                                                      |                                               |         |       |
| Whole Fish (Spain)             | 1.6 - 3.3                                                                                                                    |                                                                               |                                                                            |                                                                 | <mdl td="" –<=""><td></td><td></td><td>16</td></mdl> |                                               |         | 16    |
|                                |                                                                                                                              |                                                                               |                                                                            |                                                                 | 30.4                                                 |                                               |         |       |
| Soil, irrigated with reclaimed |                                                                                                                              | 0.10 - 8.2                                                                    |                                                                            |                                                                 |                                                      | <mloq -<="" td=""><td></td><td>17</td></mloq> |         | 17    |
| water (Spain)                  |                                                                                                                              |                                                                               |                                                                            |                                                                 |                                                      | 9.8                                           |         |       |
| Sewage sludge (Japan)          |                                                                                                                              | n.d 12                                                                        | 8.1 - 29                                                                   |                                                                 |                                                      |                                               | 25 - 86 | 18    |
|                                |                                                                                                                              |                                                                               | nd - 1.16                                                                  |                                                                 |                                                      |                                               |         | 19    |
| Soli (China)                   |                                                                                                                              |                                                                               | n.u 1.10                                                                   |                                                                 |                                                      |                                               |         |       |
| Soil (UK)                      |                                                                                                                              |                                                                               | 0.14 -0.21                                                                 |                                                                 |                                                      |                                               |         | 20    |
| Sewage sludge (Spain)          |                                                                                                                              | 73.6 –                                                                        | n.d424.7                                                                   |                                                                 |                                                      |                                               |         | 21    |
|                                |                                                                                                                              | 89.7                                                                          |                                                                            |                                                                 |                                                      |                                               |         |       |
| Sewage sludge (Ireland)        |                                                                                                                              | 120                                                                           |                                                                            |                                                                 |                                                      |                                               |         | 22    |
| Sewage sludge (Switzerland)    |                                                                                                                              |                                                                               |                                                                            |                                                                 | 32 0-                                                |                                               |         | 23    |
|                                |                                                                                                                              |                                                                               |                                                                            |                                                                 | 18740                                                |                                               |         |       |
| Solid digestate (Norway)       | n.d 210                                                                                                                      | 6 - 90                                                                        | n.d84                                                                      | 14 - >500                                                       | 100 - >600                                           | n.d. – 132                                    | n.d 76  | This  |
|                                |                                                                                                                              |                                                                               |                                                                            |                                                                 |                                                      |                                               |         | study |

For abbreviations of CECs please consult table S1. <MLOQ: below method quantification limit, n.d. = not detected, <MLOD = below method detection limit.

### Table 13 List of the used instruments and software

| Item       | Specification                                                                | Producer                                                         | Supplier                                |
|------------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|
| MS         | 6460 series<br>triple quadrupole LC/MS                                       | Agilent<br>Technologies, Santa<br>Clara, CA, USA                 | Matriks AS, Oslo,<br>Norway             |
| HPLC       | Agilent 1200 series with<br>auto sampler, binary pump and column<br>oven     | Agilent<br>Technologies, Santa<br>Clara, CA, USA                 | Matriks AS, Oslo,<br>Norway             |
| Software   | MassHunter, Quantitative analysis for QQQ, Versjon B.07.00/Build 7.0.457.0   | Agilent<br>Technologies, Santa<br>Clara, CA, USA                 | Matriks AS, Oslo,<br>Norway             |
| Software   | MassHunter, Qualititative analysis for QQQ, Versjon B.06.00/Build 6.0.633.10 | Agilent<br>Technologies, Santa<br>Clara, CA, USA                 | Matriks AS, Oslo,<br>Norway             |
| Evaporator | Reacti-Vap III™ Evaporator                                                   | Thermo Scientific,<br>Waltham, MA, USA                           | VWR<br>International AS,<br>Oslo, Norge |
| Shaker     | VXR basic Vibrax                                                             | IKA <sup>®</sup><br>Werke GmbH<br>& Co, KG. Staufen,<br>Tyskland | Sigma<br>Aldrich,<br>Oslo, Norge        |
| Centrifuge | Rotanta, 50 mL                                                               | Andreas Hettih GmbH & Co. KG,<br>Tuttlingen, Tysklan             | Dipl.ing.<br>Houm<br>AS, Oslo, Norge    |
| Vortex     | MS 3 basic                                                                   | IKA-Werke GmbH & Co, KG.<br>Wilmington, N.C, USA                 |                                         |



Figure S3a. MRM chromatogram and mass spectrum of 2-Hydroxy Atorvastatin standard



Figure S3b. MRM chromatogram and mass spectrum of 2-Hydroxy Atorvastatin detected in digestate sample (F<sub>(S)</sub>)



Figure S4a MRM chromatogram and mass spectrum of Acridine standard



Figure S4b MRM chromatogram and mass spectrum of Acridine detected in digestate sample  $(I_{(L)})$ 



Figure S5aMRM chromatogram and mass spectrum of Amitriptyline standard



Figure S5b MRM chromatogram and mass spectrum of Amitriptyline detected in digestate sample  $(I_{(L)})$ 



Figure S6a MRM chromatogram and mass spectrum of Atenolol standard



Figure S6b MRM chromatogram and mass spectrum of Atenolol detected in digestate sample  $(C_{(L)})$ 



Figure S7a MRM chromatogram and mass spectrum of Caffeine standard



Figure S7b MRM chromatogram and mass spectrum of Caffeine detected in digestate sample  $(L_{(S)})$ 



Figure S8a MRM chromatogram and mass spectrum of Carbamazepine standard



Figure S8b MRM chromatogram and mass spectrum of Carbamazepine detected in digestate sample  $(L_{(S)})$ 



Figure S9a MRM chromatogram and mass spectrum of Diclofenac standard



Figure S9b MRM chromatogram and mass spectrum of Diclofenac detected in digestate sample  $(E_{(L)})$ 



Figure S10a MRM chromatogram and mass spectrum of DEET standard



Figure S10b MRM chromatogram and mass spectrum of DEET detected in digestate sample (E<sub>(L)</sub>)



Figure S11a MRM chromatogram and mass spectrum of Losartan standard



Figure S11b MRM chromatogram and mass spectrum of Losartan detected in digestate sample (K(S))



Figure S12a MRM chromatogram and mass spectrum of Metoprolol standard



Figure S12b MRM chromatogram and mass spectrum of Metoprolol detected in digestate sample  $(K_{(S)})$ 



Figure S13a MRM chromatogram Monesin standard



Figure S13b MRM chromatogram Monesin detected in digestate sample (L(L))



Figure S14a MRM chromatogram and mass spectrum of Octocrylene standard



Figure S14b MRM chromatogram and mass spectrum of Octocrylene detected in digestate sample (B<sub>(S)</sub>)



Figure S15a MRM chromatogram and mass spectrum of Ranitidine standard



Figure S15b MRM chromatogram and mass spectrum of Ranitidine detected in digestate sample (B<sub>(S)</sub>)



Figure S16a MRM chromatogram and mass spectrum of Acetaminophen standard



Figure S16b MRM chromatogram and mass spectrum of Acetaminophen detected in digestate sample  $(F_{(L)})$ 



Figure S17a MRM chromatogram and mass spectrum of SUM TCPP standard



Figure S17b MRM chromatogram and mass spectrum of SUM TCPP detected in digestate sample ( $E_{(S)}$ )

### References

- 1. A. L. Batt, M. S. Kostich and J. M. Lazorchak, Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC– MS/MS, *Analytical Chemistry*, 2008, **80**, 5021-5030.
- 2. D. C. Harris, *Quantitative Chemical Analysis*, W.H.. Freeman / Co., 2016.
- 3. E. M. Thurman, Solid-phase extraction: principles and practice, *Chemical analysis;* 147, 1998.
- 4. M. E. Lindsey, M. Meyer and E. Thurman, Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry, *Analytical chemistry*, 2001, **73**, 4640-4646.
- 5. W. J. Blanchflower, R. J. McCracken, A. S. Haggan and D. G. Kennedy, Confirmatory assay for the determination of tetracyline, oxytetracycline, chlortetracycline and its isomers in muscle and kidney using liquid chromatography-mass spectrometry, *Journal of Chromatography B: Biomedical Sciences and Applications*, 1997, **692**, 351-360.
- 6. V. H. Vartanian, B. Goolsby and J. S. Brodbelt, Identification of tetracycline antibiotics by electrospray ionization in a quadrupole ion trap, *Journal of the American Society for Mass Spectrometry*, 1998, **9**, 1089-1098.
- 7. T. Benijts, R. Dams, W. Lambert and A. De Leenheer, Countering matrix effects in environmental liquid chromatography–electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals, *Journal of chromatography A*, 2004, **1029**, 153-159.
- 8. S. Souverain, S. Rudaz and J.-L. Veuthey, Matrix effect in LC-ESI-MS and LC-APCI-MS with offline and on-line extraction procedures, *Journal of Chromatography A*, 2004, **1058**, 61-66.
- 9. E. Rogatsky and D. Stein, Evaluation of matrix effect and chromatography efficiency: new parameters for validation of method development, *Journal of the American Society for Mass Spectrometry*, 2005, **16**, 1757-1759.
- 10. D. Love, R. Halden, M. Davis and K. Nachman, Feather meal: a previously unrecognized route for reentry into the food supply of multiple pharmaceuticals and personal care products (PPCPs), *Environmental science & technology*, 2012, **46**, 3795-3802.
- 11. A. Nieto, F. Borrull, E. Pocurull and R. M. Marcé, Occurrence of pharmaceuticals and hormones in sewage sludge, *Environmental Toxicology and Chemistry*, 2010, **29**, 1484-1489.
- 12. B. Du, P. Perez-Hurtado, B. Brooks and C. Chambliss, Evaluation of an isotope dilution liquid chromatography tandem mass spectrometry method for pharmaceuticals in fish, *Journal of Chromatography A*, 2012, **1253**, 177-183.
- 13. M. Gorga, S. Insa, M. Petrovic and D. Barceló, Analysis of endocrine disrupters and related compounds in sediments and sewage sludge using on-line turbulent flow chromatography–liquid chromatography–tandem mass spectrometry, *Journal of Chromatography A*, 2014, **1352**, 29-37.
- 14. P. Gago-Ferrero, M. S. Díaz-Cruz and D. Barceló, Occurrence of multiclass UV filters in treated sewage sludge from wastewater treatment plants, *Chemosphere*, 2011, **84**, 1158-1165.
- 15. D. Chen, R. J. Letcher and S. Chu, Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography–tandem quadrupole mass spectrometry, *Journal of Chromatography A*, 2012, **1220**, 169-174.
- 16. P. Gago-Ferrero, M. S. Díaz-Cruz and D. Barceló, UV filters bioaccumulation in fish from Iberian river basins, *Science of the Total Environment*, 2015, **518**, 518-525.
- 17. A. Martínez-Piernas, P. Plaza-Bolaños, E. García-Gómez, P. Fernández-Ibáñez and A. Agüera, Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: Target and suspect approaches, *Analytica Chimica Acta*, 2018.

- 18. H. Matsuo, H. Sakamoto, K. Arizono and R. Shinohara, Behavior of pharmaceuticals in waste water treatment plant in Japan, *Bulletin of environmental contamination and toxicology*, 2011, **87**, 31-35.
- 19. W. C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, *Environmental pollution*, 2014, **187**, 193-201.
- 20. V. Jones, M. Gardner and B. Ellor, Concentrations of trace substances in sewage sludge from 28 wastewater treatment works in the UK, *Chemosphere*, 2014, **111**, 478-484.
- 21. J. Radjenović, M. Petrović and D. Barceló, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, *Water research*, 2009, **43**, 831-841.
- 22. L. Barron, J. Tobin and B. Paull, Multi-residue determination of pharmaceuticals in sludge and sludge enriched soils using pressurized liquid extraction, solid phase extraction and liquid chromatography with tandem mass spectrometry, *Journal of Environmental Monitoring*, 2008, **10**, 353-361.
- 23. C. Plagellat, T. Kupper, R. Furrer, L. F. De Alencastro, D. Grandjean and J. Tarradellas, Concentrations and specific loads of UV filters in sewage sludge originating from a monitoring network in Switzerland, *Chemosphere*, 2006, **62**, 915-925.