Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2019

Submitted to Environmental Sciences: Processes and Impacts

# VERTICAL TRANSPORT AND SINKS OF PERFLUOROALKYL SUBSTANCES IN THE GLOBAL

# **OPEN OCEAN**

González-Gaya, Belén<sup>1,2,3\*</sup>Casal, Paulo<sup>2</sup>, Jurado, Elena<sup>2,4</sup>, Dachs, Jordi<sup>2</sup>, Jiménez, Begoña<sup>1</sup>.

<sup>1</sup> Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.

<sup>2</sup> Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.

<sup>3</sup> Department of Analytical Chemistry, Plentzia Marine Station of University of Basque Country (EHU/UPV), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain.

<sup>4</sup> Engineering Department, La Salle Campus Barcelona, Ramon Llull University (URL), Sant Joan de la Salle, 42, 08022 Barcelona, Catalonia, Spain.

<sup>\*</sup> Corresponding author <a href="mailto:b.gonzalez@iqog.csic.es">b.gonzalez@iqog.csic.es</a>

# INDEX

| Table S1. Sampling stations; location, depth and sampling dates of the DCM water samples                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text S1. Sample treatment and analysis $\epsilon$                                                                                                                                  |
| Text S2. Sample QA/QC                                                                                                                                                              |
| Table S2. Individual and total PFAS concentrations (pg L <sup>-1</sup> ) in DCM Ocean water samples and total PFAS concentrations (pg L <sup>-1</sup> ) in surface water samples10 |
| Figure S1. Average relative contribution of the individual PFAS at the DCM for each oceanic sub basin                                                                              |
| Figure S2. Concentration (pg L <sup>-1</sup> ) of the individual PFAS at the surface (a) and DCM depth (b) for each sample.                                                        |
| Table S3. Comparison of PFAS concentrations (pg L <sup>-1</sup> ) in deep seawaters from different ocean basins including values from the present study                            |
| Figure S3. Eddy diffusion coefficients ( $K_{\rho}$ , m <sup>2</sup> s <sup>-1</sup> ) at the surface and DCM depth17                                                              |
| Table S4. Mean relative error of modeled DCM concentration (%)                                                                                                                     |
| Figure S4. Absolute error of modelled DCM concentration per sub basin                                                                                                              |
| Figure S5. Modelled PFOS and PFOA concentrations versus measured concentrations (pg L <sup>-1</sup> ) at the DCM depth                                                             |
| Table S5. Turbulent fluxes ( <i>F<sub>Eddy</sub></i> , ng m <sup>-2</sup> day <sup>-1</sup> )21                                                                                    |
| Figure S6 Turbulent fluxes at surface for PFOS and PFOA ( <i>F<sub>Eddy</sub></i> , ng m <sup>-2</sup> day <sup>-1</sup> )23                                                       |
| Table S6. Organic carbon sinking fluxes ( <i>F<sub>oc</sub></i> , mg C m <sup>-2</sup> day <sup>-1</sup> )24                                                                       |
| Table S7. Biological pump fluxes ( <i>F<sub>settling</sub></i> , ng m <sup>-2</sup> day <sup>-1</sup> )26                                                                          |
| Table S8. Biological pump fluxes for PFOS and PFOA branched isomers ( <i>F<sub>Settling</sub></i> , ng m <sup>-2</sup> day <sup>-1</sup> )28                                       |
| Figure S7. Biological pump ranges (A) phytoplankton and B) zooplankton related fluxes) and PFAS K <sub>ow</sub>                                                                    |
| Figure S8. Relation between DCM water phase concentrations and F <sub>settling</sub> for PFOA                                                                                      |
| Table S9. Annual mean export of PFAS due to turbulent fluxes ( $F_{Eddy}$ ) and biological pump fluxes ( $F_{Settling}$ ) and calculated residence times (years)                   |
| REFERENCES                                                                                                                                                                         |

| Leg* | Station | Ocean    | Day        | UTC<br>Time | Longitude | Latitude | DCM<br>Depth<br>(m) |
|------|---------|----------|------------|-------------|-----------|----------|---------------------|
| 1    | 3       | Atlantic | 12/19/2010 | 10:30       | -17.285   | 29.686   | 98                  |
| 1    | 7       | Atlantic | 12/23/2010 | 12:40       | -23.456   | 21.456   | 88                  |
| 1    | 8       | Atlantic | 12/24/2010 | 10:30       | -24.36    | 20.275   | 45                  |
| 1    | 9       | Atlantic | 12/25/2010 | 12:40       | -26.018   | 16.165   | 75                  |
| 1    | 11      | Atlantic | 12/27/2010 | 11:53       | -26.021   | 14.514   | 65                  |
| 1    | 12      | Atlantic | 12/28/2010 | 10:25       | -26.001   | 9.563    | 88                  |
| 1    | 13      | Atlantic | 12/29/2010 | 10:20       | -26.011   | 7.33     | 55                  |
| 1    | 14      | Atlantic | 12/30/2010 | 10:35       | -26.035   | 5.021    | 120                 |
| 1    | 15      | Atlantic | 12/31/2010 | 10:55       | -26.071   | 2.503    | 80                  |
| 1    | 17      | Atlantic | 1/2/2011   | 11:17       | -27.348   | -3.024   | 75                  |
| 1    | 18      | Atlantic | 1/3/2011   | 11:25       | -28.167   | -4.785   | 110                 |
| 1    | 20      | Atlantic | 1/5/2011   | 11:19       | -30.191   | -9.069   | 150                 |
| 1    | 21      | Atlantic | 1/6/2011   | 12:45       | -31.465   | -11.647  | 150                 |
| 1    | 23      | Atlantic | 1/8/2011   | 11:50       | -33.435   | -15.801  | 152                 |
| 1    | 24      | Atlantic | 1/9/2011   | 12:50       | -34.669   | -18.411  | 130                 |
| 1    | 26      | Atlantic | 1/11/2011  | 11:48       | -37.001   | -23.054  | 125                 |
| 2    | 28      | Atlantic | 1/20/2011  | 11:11       | -33.366   | -24.795  | 120                 |
| 2    | 29      | Atlantic | 1/21/2011  | 10:50       | -30.151   | -25.402  | 120                 |
| 2    | 30      | Atlantic | 1/22/2011  | 11:30       | -27.591   | -25.847  | 130                 |
| 2    | 31      | Atlantic | 1/23/2011  | 11:00       | -24.257   | -26.409  | 140                 |
| 2    | 32      | Atlantic | 1/24/2011  | 11:00       | -21.433   | -26.892  | 125                 |
| 2    | 33      | Atlantic | 1/25/2011  | 11:05       | -18.084   | -27.556  | 120                 |
| 2    | 34      | Atlantic | 1/26/2011  | 10:35       | -14.792   | -28.079  | 150                 |
| 2    | 37      | Atlantic | 1/29/2011  | 10:30       | -5.424    | -29.675  | 110                 |
| 2    | 38      | Atlantic | 1/30/2011  | 10:30       | -2.441    | -30.256  | 105                 |
| 2    | 39      | Atlantic | 1/31/2011  | 16:00       | 1.475     | -30.949  | 110                 |
| 2    | 40      | Atlantic | 2/1/2011   | 10:40       | 3.841     | -31.317  | 70                  |
| 2    | 41      | Atlantic | 2/2/2011   | 10:45       | 6.752     | -31.771  | 85                  |
| 2    | 42      | Atlantic | 2/3/2011   | 10:40       | 9.92      | -32.274  | 72                  |
| 2    | 43      | Atlantic | 2/4/2011   | 10:35       | 12.734    | -32.771  | 48                  |
| 2    | 44      | Atlantic | 2/5/2011   | 10:50       | 15.479    | -33.307  | 55                  |
| 3    | 46      | Indian   | 2/14/2011  | 8:52        | 27.494    | -34.863  | 93                  |
| 3    | 47      | Indian   | 2/15/2011  | 7:03        | 31.05     | -34.464  | 80                  |
| 3    | 49      | Indian   | 2/17/2011  | 8:52        | 36.981    | -33.868  | 87                  |
| 3    | 50      | Indian   | 2/18/2011  | 6:42        | 39.872    | -33.526  | 125                 |
| 3    | 52      | Indian   | 2/24/2011  | 5:30        | 61.483    | -30.053  | 130                 |
| 3    | 53      | Indian   | 2/25/2011  | 6:00        | 63.259    | -27.972  | 130                 |
| 3    | 55      | Indian   | 2/27/2011  | 5:00        | 69.424    | -29.355  | 130                 |
| 3    | 57      | Indian   | 3/1/2011   | 5:00        | 76.066    | -29.892  | 140                 |
| 3    | 58      | Indian   | 3/2/2011   | 4:30        | 79.612    | -29.824  | 130                 |
| 3    | 60      | Indian   | 3/4/2011   | 4:57        | 86.252    | -29.747  | 150                 |
| 3    | 63      | Indian   | 3/7/2011   | 3:20        | 96.416    | -29.571  | 114                 |

Table S1. Sampling stations; location, depth and sampling dates of the DCM water samples

| 3  | 64  | Indian   | 3/8/2011  | 3:15  | 99.999   | -29.897 | 113 |
|----|-----|----------|-----------|-------|----------|---------|-----|
| 3  | 66  | Indian   | 3/10/2011 | 3:50  | 107.25   | -30.81  | 100 |
| 3  | 67  | Indian   | 3/11/2011 | 2:20  | 110.22   | -31.12  | 130 |
| 4a | 70  | Indian   | 3/20/2011 | 0:55  | 120.866  | -36.634 | 100 |
| 4a | 71  | Indian   | 3/21/2011 | 1:50  | 124.878  | -37.281 | 75  |
| 4a | 73  | Indian   | 3/24/2011 | 0:20  | 131.592  | -38.515 | 70  |
| 4a | 75  | Indian   | 3/25/2011 | 22:21 | 138.791  | -39.853 | 60  |
| 4a | 77  | Pacific  | 3/28/2011 | 23:54 | 150.436  | -38.699 | 60  |
| 4a | 78  | Pacific  | 3/29/2011 | 22:16 | 150.949  | -36.779 | 80  |
| 5  | 82  | Pacific  | 4/20/2011 |       | -178.24  | -23.346 | 110 |
| 5  | 84  | Pacific  | 4/22/2011 |       | -175.864 | -18.562 | 89  |
| 5  | 86  | Pacific  | 4/24/2011 |       | -173.397 | -13.533 | 105 |
| 5  | 88  | Pacific  | 4/26/2011 |       | -172.367 | -9.455  | 115 |
| 5  | 90  | Pacific  | 4/28/2011 |       | -170.816 | -5.732  | 100 |
| 5  | 92  | Pacific  | 4/30/2011 |       | -168.385 | -1.289  | 65  |
| 5  | 94  | Pacific  | 5/2/2011  |       | -165.734 | 3.943   | 80  |
| 5  | 97  | Pacific  | 5/5/2011  |       | -162.398 | 11.657  | 89  |
| 5  | 99  | Pacific  | 5/7/2011  |       | -159.443 | 17.982  | 140 |
| 6  | 102 | Pacific  | 5/15/2011 | 19:56 | -153.43  | 21.577  | 140 |
| 6  | 103 | Pacific  | 5/16/2011 | 19:56 | -150.442 | 21.063  | 105 |
| 6  | 106 | Pacific  | 5/19/2011 | 18:47 | -141.635 | 19.917  | 125 |
| 6  | 107 | Pacific  | 5/20/2011 | 19:40 | -138.977 | 19.287  | 130 |
| 6  | 109 | Pacific  | 5/22/2011 | 18:30 | -133.324 | 18.075  | 125 |
| 6  | 110 | Pacific  | 5/23/2011 | 18:20 | -130.634 | 17.39   | 110 |
| 6  | 112 | Pacific  | 5/25/2011 | 17:48 | -124.523 | 15.916  | 40  |
| 6  | 113 | Pacific  | 5/26/2011 | 15:10 | -121.998 | 15.31   | 137 |
| 6  | 114 | Pacific  | 5/27/2011 | 15:35 | -118.776 | 14.528  | 88  |
| 6  | 116 | Pacific  | 5/29/2011 | 18:10 | -113.267 | 13.187  | 70  |
| 6  | 117 | Pacific  | 5/30/2011 | 18:50 | -110.373 | 12.475  | 124 |
| 6  | 120 | Pacific  | 6/2/2011  | 15:54 | -102.459 | 10.76   | 37  |
| 6  | 121 | Pacific  | 6/3/2011  | 15:25 | -99.253  | 10.07   | 43  |
| 6  | 123 | Pacific  | 6/5/2011  | 17:20 | -93.143  | 8.809   | 24  |
| 6  | 124 | Pacific  | 6/6/2011  | 15:10 | -90.341  | 8.153   | 23  |
| 6  | 125 | Pacific  | 6/7/2011  | 15:10 | -87.9    | 7.207   | 20  |
| 7  | 128 | Atlantic | 6/21/2011 | 14:15 | -71.772  | 14.226  | 97  |
| 7  | 129 | Atlantic | 6/22/2011 | 14:52 | -69.384  | 15.068  | 95  |
| 7  | 131 | Atlantic | 6/25/2011 | 13:50 | -59.833  | 17.427  | 90  |
| 7  | 132 | Atlantic | 6/26/2011 | 13:20 | -57.845  | 18.094  | 160 |
| 7  | 134 | Atlantic | 6/28/2011 | 12:30 | -52.691  | 20.014  | 130 |
| 7  | 135 | Atlantic | 6/29/2011 | 12:45 | -50.178  | 20.79   | 135 |
| 7  | 137 | Atlantic | 7/1/2011  | 12:36 | -44.531  | 22.862  | 137 |
| 7  | 138 | Atlantic | 7/2/2011  | 11:05 | -41.918  | 23.766  | 130 |
| 7  | 140 | Atlantic | 7/4/2011  | 11:07 | -35.324  | 26.111  | 140 |
| 7  | 141 | Atlantic | 7/5/2011  | 10:40 | -32.924  | 26.925  | 150 |
| 7  | 143 | Atlantic | 7/7/2011  | 9:50  | -26.97   | 28.874  | 120 |
| 7  | 144 | Atlantic | 7/8/2011  | 10:33 | -23.71   | 29.978  | 100 |

| 7 | 146 | Atlantic | 7/10/2011 | 9:20 | -17.286 | 32.084 | 110 |
|---|-----|----------|-----------|------|---------|--------|-----|
| 7 | 147 | Atlantic | 7/11/2011 | 9:30 | -14.678 | 32.846 | 90  |

\*"Leg" term corresponds to transects: (1) Cadiz (Spain) – Rio de Janeiro (Brazil, (2) Rio de Janeiro (Brazil) – Cape Town (Republic of South Africa), (3) Cape Town (Republic of South Africa) – Perth (Australia), (4) Perth (Australia) – Sydney (Australia), (5) Sydney (Australia) – Honolulu (Hawaii, USA), (6) Honolulu (Hawaii, USA) – Cartagena de Indias (Colombia), (7) Cartagena de Indias (Colombia) – Cartagena (Spain).

# Text S1. Sample treatment and analysis

## Reagents and standards

All the solvents and solutions used were of analytical grade and highest available purity. Methanol, acetone and water from Merk were of LiChrosolv quality. Likewise, acetonitrile (Fluka) and acetic acid (Scharlab) were of HPLC quality. Ammonia (30% for analysis) and Ammonium acetate (solid PRS) were provided by Panreac. Filtration and solid phase extraction were done with glass fiber filters (GF/F, 0.7  $\mu$ m, Whatman) and OASIS WAX cartridges (150 mg, 6 cc, 30  $\mu$ m, Waters).

The native standard solution used was made of  $C_4$ - $C_{14}$ ,  $C_{16}$  and  $C_{18}$  PFCAs and  $C_4$ ,  $C_6$ -  $C_8$ ,  $C_{10}$  and  $C_{12}$  PFSAs (PFAC-MXB commercial solution), plus the perfluorooctane sulfonamide (FOSA) and N-methyl perfluorooctane sulfonamide (N-MeFOSA). The recovery standard solution contained <sup>13</sup>C labeled  $C_{4,6,8-12}$  PFCAs, <sup>18</sup>O  $C_6$  and <sup>13</sup>C  $C_8$  PFSAs (MPFAC-MXA commercial solution). The injection standard consisted of a mixture of PFOA <sup>13</sup>C<sub>8</sub>, PFOS <sup>13</sup>C<sub>8</sub>, <sup>3</sup>D-N-MeFOSA and PFUnDA <sup>13</sup>C<sub>7</sub>. All standards were supplied by Wellington Laboratories (Ontario, Canada).

## DCM sampling

Samples were gathered at the same locations were the previously published surface samples (Table S1). When the research vessel was stopped, a, oceanographic rosette structure containing a set of 30 L *niskin* bottles, a CTD (conductivity, temperature, depth) and an oxygen and chlorophyll (fluorescence) profiler was launched from board (figure bellow, left) towards the maximum sampling depth at each location. During the descent of the CTD, a vertical profile (figure below, right showing temperature, salinity, oxygen and fluorescence) was drawn for the station and the interesting depths (i.e. deep chlorophyll maximum, DCM) were noted. During the way up, the noted depths were sampled by the *niskin* automatic closing system. Once on board, the water from the DCM was transferred to 1 L polypropylene (PP) bottles for its subsequent filtration and solid phase extraction in the boat laboratory.



#### Sample treatment

Immediately after sampling, seawater samples were filtered through pre-combusted (450°C, overnight) glass fiber filters (GF/F, Whatman). Samples were spiked with a solution containing seven <sup>13</sup>C labelled PFCAs, and two <sup>18</sup>O and <sup>13</sup>C labelled PFSAs, indicated in the reagents section. Then, samples were extracted on board by solid phase extraction using OASIS WAX cartridges (6cc, 150 mg, 30 µm, Waters) on a manifold system. The cartridges were conditioned with 4 mL methanol, 4 mL ammonia 0.1% in methanol and 4 mL of chromatographic-grade water. Then, the 1 L filtered sample was loaded and vacuum extracted at a constant slow flow. The cartridges were then washed with 4 mL of chromatographic-grade water to remove salts and matrix impurities, dried under vacuum aspiration for 30 minutes and kept at -20° C folded in aluminum foil and zip PP bags during the rest of the cruise, until their elution in the land laboratory. Once back in land laboratory (IQOG-CSIC, Madrid, Spain), cartridges were unfreezed, pH conditioned with 4 mL of ammonium acetate buffer 25 mM at pH 4 and vacuum dried to remove all aqueous phase. The target compounds were eluted with 4 mL methanol and 4 mL ammonia 0.1% in methanol, concentrated under a gentle nitrogen flux down to  $\sim$ 0.3 mL and then, transferred to self-filtration PP vials (Mini-UniPrep Syringeless Filters vials, Whatman) directly used for injection. Samples were injected always after the fewest time possible after elution (1 day maximum).

#### Instrumental analysis

The instrumental analysis was performed using a Waters Acquity Ultra Performance Liquid Chromatography system coupled with a Waters XEVO TQS, triple-quadrupole mass spectrometer (UPLC-MS/MS). To reduce instrumental contamination, a C18 hold-up column available as a PFC kit analysis from Waters was installed on the aqueous solvent line before the mixing chamber.

Ten  $\mu$ L of each sample were injected onto an Acquity UPLC BEH C18 column (1.7 um, 2.1 × 50 mm; Waters) kept at 50 °C. Separation was achieved by the use of a gradient mobile phase of water and methanol with a constant 1% of acetonitrile buffer at a flow rate of 400  $\mu$ L/min. Electrospray negative ionization (ESI) was used with the mass spectrometer operating in the multiple-reaction-monitoring (MRM) mode. Ionization and collision cell parameters were optimized for each individual analyte with commercial standards. MS/MS parameters for the target compounds can be fully found in González-Gaya et al. <sup>1</sup> Each sample was injected in triplicate. A calibration curve was made with 10 points from 0.001 pg to 100 pg injected on column. The quantification followed the internal standard procedure, using the labeled compounds indicated in the reagents section in this SI.

# Text S2. Sample QA/QC

| Standard              | PFBA-<br><sup>13</sup> C <sub>4</sub> | PFHxA - | PFHxS - <sup>18</sup> O <sub>2</sub> | PFOA -<br><sup>13</sup> C <sub>4</sub> | PFNA -<br><sup>13</sup> C <sub>5</sub> | PFOS -<br><sup>13</sup> C <sub>4</sub> | PFDA -<br><sup>13</sup> C <sub>2</sub> | PFUDA<br>- <sup>13</sup> C <sub>2</sub> | PFDoDA<br>- <sup>13</sup> C <sub>2</sub> |
|-----------------------|---------------------------------------|---------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------------|
| Average<br>Recovery % | 34                                    | 130     | 150                                  | 100                                    | 76                                     | 77                                     | 160                                    | 140                                     | 120                                      |

#### Average surrogate recoveries (%) in DCM samples

Note that recoveries in this database differs from the previously published values in Casal *el al.* 2017<sup>2</sup> as the previous recoveries are the average for the 28 samples included in that article, while here the complete 89 samples recoveries are averaged. As done in previous reports, samples concentrations were not recovery corrected.<sup>1,2</sup> Recoveries for <sup>13</sup>C<sub>3</sub>-PFBA, <sup>13</sup>C<sub>2</sub>-PFUnDA and <sup>13</sup>C<sub>2</sub>-PFDoDA were not considered to fulfill a minimum QA/QC boundary; PFBA was exhibited a very low recovery, and PFUDA and PFDoDA showed inconsistencies during the analysis. The latter appeared at the end of the chromatogram, showed bad peak shapes, long tails, very high variability within injection replicates, and therefore the values for those compounds are not given in the dataset.

|                           | n | PFBS | PFHxA | PFHpA | PFHxS | PFOA  | PFHpS | PFNA  | FOSA  | PFOS  | N-<br>MeFOSA | PFDA |
|---------------------------|---|------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|------|
| Laboratory blanks         |   |      |       |       |       |       |       |       |       |       |              |      |
| Chromatography water      | 3 | 8.3  | 3.7   | 7.0   | 0.50  | 5.7   | 18    | 29    | nd    | 4.3   | 2.7          | 12   |
| SPE- Chromatography water | 4 | 12   | 3.0   | 8.0   | 0.37  | 13    | 3.2   | 14    | nd    | 4.8   | 3.3          | 25   |
| Reagents                  | 4 | 6.0  | 2.8   | 7.4   | 0.0   | 5.3   | 1.9   | 8.2   | nd    | 3.3   | 2.7          | 8.5  |
| Field blanks              |   |      |       |       |       |       |       |       |       |       |              |      |
| Niskin bottle             | 3 | 7.0  | 4.0   | 1.3   | 3.0   | 15    | 0.0   | 58    | 0.0   | 3.0   | 0.0          | 1.3  |
| MDL                       |   | 0.32 | 2.7   | 1.7   | 0.59  | 0.010 | 0.49  | 0.010 | 0.010 | 0.063 | 0.020        | 0.66 |
| MQL                       |   | 1.1  | 10    | 5.3   | 1.9   | 0.80  | 1.6   | 0.29  | 0.010 | 0.43  | 0.025        | 1.1  |

QA/QC for DCM and surface samples, laboratory and field blanks, MDLs, MQLs (pg L<sup>-1</sup>)

Field blank samples of the Niskin bottle were carried out with chromatography-grade water after washing the Niskin bottle with methanol and chromatography-grade water. Then, the Niskin field blanks were obtained subtracting the levels of PFAS present in the chromatographic grade water not in contact with the bottle. Laboratory blanks consisted on a) chromatographic-grade water (same accounted for field blanks, directly injected), b) SPE-extracted chromatographic-grade water and c) the reagents used for analysis. There were no substantial differences among field and laboratory blanks b and c, showing a negligible contamination effect by neither the Niskin bottle nor the sample treatment method.<sup>1</sup> Blanks concentrations were not subtracted to samples values, as the measured concentrations appeared to come from chromatography water, and no from the extraction and analytical procedure. Resemblance on the chromatographs between different type of blanks performed with chromatographic water and not with the "cleanest" samples, points to this reason. For the highest concentrations with good recoveries of that congener labelled compound. Therefore, it can be assumed that the PFNA was found in the chrom. grade water, but did not come from the analytical procedure.

The method detection limit (MDL) and method quantification limit (MQL) were calculated as the mean of instrument detection limit (IDL) and instrumental quantification limit (IQL) (automatically calculated through iteration of all the analyzed samples and standards signal to noise ratio by MassLynx software package, Waters) of 20 random samples plus the standard deviation.

Table S2. Individual and total PFAS concentrations (pg L<sup>-1</sup>) in DCM Ocean water samples and total PFAS concentrations (pg L<sup>-1</sup>) in surface water samples

| station | DEDC |       | DELLos | DEOS |       |       |      |       |      | FOSA |            | ΣΡϜΑϚ     | ΣΡϜΑϚ                |
|---------|------|-------|--------|------|-------|-------|------|-------|------|------|------------|-----------|----------------------|
| Station | PFD3 | РГПХЭ | егпрэ  | PF03 | РГПХА | РгпрА | PFUA | PFINA | PFDA | FUSA | N-IVIEFO3A | DCM       | surface <sup>1</sup> |
| 2       |      |       |        |      |       |       |      |       |      |      |            | No sample | 1290                 |
| 3       | 95.9 | 18.8  | 67.6   | 524  | 66.2  | 89.0  | 186  | 1050  | 2120 | nd   | 0.18       | 4220      | 355                  |
| 5       |      |       |        |      |       |       |      |       |      |      |            | No sample | 3130                 |
| 7       |      |       |        |      |       |       |      |       |      |      |            | No sample | 516                  |
| 8       | 32.5 | 8.54  | 27.4   | 99.0 | 11.9  | 37.4  | 78.5 | 363   | 1230 | nd   | 0.36       | 1890      | 353                  |
| 9       | 50.0 | 6.88  | 5.36   | 37.2 | 19.0  | 11.3  | 33.1 | 27.7  | 72.9 | nd   | nd         | 263       | 2940                 |
| 11      | 68.0 | 7.14  | 24.6   | 34.2 | 46.4  | 11.9  | 32.0 | 24.9  | 50.5 | nd   | nd         | 300       | 285                  |
| 12      | 119  | 5.10  | 2.34   | 74.3 | 90.4  | 25.3  | 51.4 | 254   | 525  | nd   | nd         | 1150      | 340                  |
| 13      | 9.40 | 4.88  | 2.86   | 53.2 | 26.8  | 15.7  | 38.1 | 123   | 489  | nd   | 0.39       | 763       | 4000                 |
| 14      | 25.8 | 6.88  | 2.22   | 55.1 | 45.1  | 14.1  | 44.0 | 139   | 643  | nd   | nd         | 975       | 1140                 |
| 15      | 4.62 | 2.65  | 1.34   | 16.2 | 26.4  | 6.33  | 22.2 | 22.4  | 97.9 | nd   | nd         | 200       | 300                  |
|         |      |       |        |      |       |       |      |       |      |      |            |           |                      |
| 17      | 95.3 | 316   | 85.4   | 3400 | 249   | 8.47  | 53.2 | 25.0  | 144  | 0.82 | nd         | 4370      | 9040                 |
| 18      | 106  | 193   | 56.3   | 1910 | 100   | 9.37  | 34.9 | 27.7  | 64.5 | nd   | nd         | 2500      | 5630                 |
| 20      | 24.0 | 681   | 108    | 9580 | 12.0  | 21.0  | 77.0 | 40.0  | 149  | 17.0 | 3.00       | 10700     | 4480                 |
| 21      | 57.8 | 140   | 96.4   | 1620 | 32.3  | 12.8  | 54.0 | 18.4  | 96.6 | nd   | nd         | 2130      | 7150                 |
| 23      | 56.3 | 134   | 25.7   | 844  | 30.8  | 6.15  | 23.4 | 15.0  | 148  | nd   | 0.03       | 1280      | 6230                 |
| 24      | 83.9 | 138   | 27.7   | 902  | 51.5  | 19.7  | 49.2 | 84.3  | 629  | nd   | 0.03       | 1990      | 10900                |
| 26      | 10.8 | 53.9  | 14.5   | 509  | 11.0  | 6.99  | 26.9 | 33.7  | 769  | 0.03 | 0.11       | 1440      | 500                  |
| 28      | 26.9 | 21.3  | 5.34   | 404  | nd    | 4.02  | 20.3 | 5.91  | 37.7 | nd   | nd         | 526       | 1630                 |
| 29      | 103  | 36.2  | 6.83   | 506  | 17.7  | 16.1  | 43.2 | 90.5  | 78.9 | nd   | nd         | 898       | 3510                 |
| 30      | 40.2 | 92.5  | 20.9   | 1340 | 71.0  | 10.3  | 46.1 | 45.1  | 14.4 | nd   | nd         | 1680      | 2750                 |

| atation | DEDC | DELLAS | DELLes | DEOG |       |       |      |       |      | FOSA |            | ΣΡϜΑϚ     | ΣΡϜΑϚ                |
|---------|------|--------|--------|------|-------|-------|------|-------|------|------|------------|-----------|----------------------|
| station | PFDS | PFEXS  | егпрэ  | PF03 | PFRXA | РгпрА | PFUA | PFINA | PFDA | FUSA | N-INIEFOSA | DCM       | surface <sup>1</sup> |
| 31      | 85.6 | 55.6   | 8.63   | 667  | 6.03  | 40.9  | 81.4 | 384   | 110  | nd   | nd         | 1440      | 2090                 |
| 32      | 62.8 | 14.6   | 1.84   | 190  | Nd    | 4.90  | 18.5 | 24.6  | 29.4 | nd   | Nd         | 346       | 1940                 |
| 33      | 480  | 50.0   | 18.4   | 1100 | 39.0  | 54.0  | 32.0 | 10.0  | Nd   | 6.00 | 9.00       | 1800      | 1130                 |
| 35      | 46.1 | 19.2   | 4.08   | 319  | Nd    | 8.49  | 18.4 | 4.24  | 4.77 | Nd   | Nd         | 424       | 733                  |
| 37      | 32.2 | 19.8   | 2.17   | 220  | Nd    | 10.8  | 23.2 | 8.46  | 6.56 | Nd   | Nd         | 323       | 305                  |
| 38      | 72.3 | 40.8   | 4.58   | 275  | Nd    | 5.93  | 27.8 | 9.32  | 7.96 | Nd   | Nd         | 444       | 732                  |
| 39      | 59.3 | 18.9   | 2.73   | 209  | Nd    | 6.38  | 19.8 | 7.61  | 1.08 | Nd   | Nd         | 325       | 409                  |
| 40      | 67.8 | 32.0   | 1.07   | 277  | Nd    | 10.2  | 20.8 | 9.58  | 4.59 | Nd   | Nd         | 423       | 620                  |
| 41      | 39.5 | 44.1   | 6.87   | 325  | 3.06  | 10.8  | 31.6 | 15.0  | 6.16 | Nd   | Nd         | 482       | 1250                 |
| 42      | 68.7 | 34.6   | 2.20   | 332  | 2.97  | 3.34  | 19.8 | 12.8  | 4.84 | Nd   | Nd         | 481       | 1100                 |
| 43      | 149  | 77.4   | 8.70   | 547  | 13.3  | 6.72  | 34.4 | 9.20  | 4.25 | Nd   | Nd         | 849       | 645                  |
| 44      | 14.1 | 20.5   | 1.33   | 337. | Nd    | 3.12  | 25.5 | 13.3  | 3.38 | Nd   | Nd         | 419       | 424                  |
| 46      | 14.3 | 15.5   | 2.45   | 76.8 | 2.49  | 11.7  | 21.3 | 43.9  | 269  | Nd   | Nd         | 457       | 329                  |
| 47      | 15.3 | 8.89   | 2.57   | 49.4 | 6.26  | 11.7  | 20.5 | 60.9  | 285  | Nd   | Nd         | 461       | 551                  |
| 49      | 3.34 | 10.1   | 1.69   | 55.7 | 10.2  | 6.18  | 18.7 | 15.5  | 63.4 | Nd   | 0.06       | 185       | 181                  |
| 50      | 24.0 | 6.24   | 1.54   | 31.1 | 8.15  | 9.55  | 24.3 | 102   | 757  | Nd   | Nd         | 964       | 263                  |
| 52      | 36.7 | 9.33   | 2.97   | 102  | 8.90  | 4.04  | 18.3 | 20.2  | 152  | Nd   | Nd         | 355       | 285                  |
| 53      | 51.0 | 10.7   | 2.06   | 60.5 | 40.5  | 6.83  | 16.2 | 8.85  | 10.2 | Nd   | Nd         | 207       | 278                  |
| 55      | 3.54 | 7.60   | 1.62   | 68.8 | 36.5  | 5.40  | 11.0 | 7.17  | 46.7 | Nd   | Nd         | 188       | 239                  |
| 57      | 18.3 | 9.48   | 2.20   | 55.3 | 20.6  | 3.80  | 12.4 | 13.8  | 138  | Nd   | Nd         | 274       | 823                  |
| 58      |      |        |        |      |       |       |      |       |      |      |            | No sample | 758                  |
| 60      | 29.1 | 8.04   | 1.65   | 125  | Nd    | 7.04  | 24.2 | 42.6  | 143  | Nd   | Nd         | 380       | 742                  |
| 63      | 134  | 11.0   | 2.19   | 159  | 22.5  | 7.19  | 19.6 | 74.7  | 90   | Nd   | Nd         | 620       | 519                  |
| 64      | 32.0 | 25.0   | 0.14   | 215  | 69.0  | Nd    | 19.0 | 59.0  | 415  | 6.00 | 3.00       | 843       | 374                  |
| 66      | 255  | 33.0   | 10.8   | 458  | 51.5  | 16.9  | 43.7 | 58.4  | 154  | 0.30 | Nd         | 1080      | 1680                 |
| 67      | 167  | 33.0   | nd     | 631  | Nd    | 175   | 40.0 | 124   | 2190 | 18.0 | 15.0       | 3400      | 1980                 |

| station | DEDC |       | DELLos | DEOS |       |       |      |       |      | FOGA |            | ΣΡϜΑϚ | ΣΡϜΑϚ                |
|---------|------|-------|--------|------|-------|-------|------|-------|------|------|------------|-------|----------------------|
| station | PFDS | PFEXS | егпрэ  | PF03 | РГПХА | РгпрА | PFUA | PFINA | PFDA | FUSA | N-IVIEFOSA | DCM   | surface <sup>1</sup> |
| 70      | 14.5 | 5.34  | 2.34   | 84.6 | 22.6  | 0.90  | 20.1 | 8.34  | 13.8 | Nd   | 0.29       | 173   | 245                  |
| 71      | 8.36 | 4.21  | 1.71   | 85.5 | Nd    | Nd    | 14.9 | 4.57  | 10.5 | Nd   | 0.230      | 130   | 176                  |
| 74      | 29.3 | 8.57  | 1.52   | 146  | 14.0  | 8.54  | 34.3 | 88.2  | 110  | Nd   | 0.255      | 440   | 429                  |
| 75      | 23.7 | 5.27  | 1.52   | 59.4 | 36.3  | 7.35  | 21.5 | 33.5  | 100  | Nd   | 0.230      | 289   | 480                  |
| 77      | 82.5 | 16.3  | 3.21   | 198  | 21.2  | 6.41  | 31.6 | 94.0  | 64.7 | Nd   | 0.240      | 518   | 256                  |
| 78      | 14.2 | 11.0  | 5.76   | 122  | 7.80  | Nd    | 34.6 | 14.4  | 34.9 | Nd   | 0.250      | 245   | No sample            |
| 82      | 120  | 15.0  | 3.84   | 201  | 30.5  | 3.54  | 33.3 | 16.6  | 40.7 | Nd   | 0.350      | 465   | 372                  |
| 84      | Nd   | 7.00  | 130.6  | 185  | 75.0  | Nd    | 25.0 | 47.0  | 335  | 6.00 | 9.00       | 820   | 622                  |
| 86      | Nd   | Nd    | 2.16   | 357  | 85.5  | 34.5  | 31.0 | 19.0  | 109  | 6.00 | 9.00       | 653   | 640                  |
| 88      | 3.00 | 14.0  | 4.98   | 102  | Nd    | 106   | 24.0 | 32.0  | 353  | 6.00 | 9.00       | 654   | 967                  |
| 90      | Nd   | 6.00  | 42.2   | 227  | 18.0  | 156   | 21.0 | 6.00  | 34.0 | 6.00 | 18.0       | 534   | 552                  |
| 92      | 15.0 | 7.50  | 13.7   | 264  | Nd    | 116   | 44.0 | 16.0  | 140  | 6.00 | 9.00       | 631   | 585                  |
| 94      | 26.1 | 137   | 40.0   | 220  | Nd    | 29.6  | 32.7 | 16.3  | 61.8 | 2.89 | 3.16       | 570   | 852                  |
| 97      | 8.77 | 24.2  | 2.96   | 109  | Nd    | 37.1  | 28.8 | 48.3  | 324  | 2.23 | 2.75       | 588   | 490                  |
| 99      | 116  | 96.3  | 226    | 233  | Nd    | 120   | 59.4 | 28.5  | 185  | 2.69 | 2.71       | 1070  | 2500                 |
| 102     | 141  | 124   | 14.5   | 146  | Nd    | 13.4  | 39.2 | 24.9  | 98.2 | 2.61 | 3.25       | 607   | 493                  |
| 103     | 41.8 | 48.4  | Nd     | 85.9 | 217   | 49.7  | 27.8 | 23.8  | 22.5 | 2.22 | 3.14       | 522   | 470                  |
| 106     | 27.4 | 37.2  | Nd     | 122  | Nd    | 25.9  | 18.5 | 16.8  | 18.7 | 2.54 | 2.79       | 272   | 497                  |
| 107     | 66.3 | 22.6  | 55.4   | 128  | 129   | 30.2  | 21.0 | 17.7  | 10.8 | 2.85 | 3.31       | 488   | 413                  |
| 109     | 26.8 | 126   | 4.71   | 102  | Nd    | 33.7  | 34.7 | 40.6  | 21.7 | 2.10 | 3.03       | 395   | 573                  |
| 110     | 43.8 | 72.9  | Nd     | 134  | Nd    | 15.5  | 32.8 | 13.0  | 35.9 | 2.63 | 2.66       | 354   | 824                  |
| 112     | 29.5 | 19.1  | 19.7   | 103  | 94.4  | 45.0  | 22.8 | 19.9  | 35.7 | 3.29 | 3.15       | 396   | 376                  |
| 113     | 25.6 | Nd    | 13.9   | 68.2 | 139   | 86.4  | 8.38 | Nd    | 7.94 | 2.51 | 3.05       | 355   | 527                  |
| 114     | Nd   | Nd    | 19.0   | 86.0 | Nd    | 50.0  | 40.0 | 17.0  | 29.0 | 6.00 | 9.00       | 256   | 896                  |
| 116     | 34.9 | 71.9  | Nd     | 91.9 | Nd    | 84.1  | 17.3 | 11.6  | 5.25 | 3.05 | 3.63       | 324   | 359                  |
| 117     | 18.0 | 36.3  | 10.4   | 26.5 | Nd    | 26.9  | 5.33 | Nd    | 15.5 | 2.50 | 2.74       | 144   | 548                  |

| atation | n PFBS PFHxS F | DELLes | DEOS  |      |       |       |      |       | FOSA |      | ΣΡϜΑS       | ΣΡϜΑϚ |                      |
|---------|----------------|--------|-------|------|-------|-------|------|-------|------|------|-------------|-------|----------------------|
| station | PFDS           | PFEXS  | егпрэ | PF03 | РГПХА | РГПРА | PFUA | PFINA | PFDA | FUSA | IN-IVIEFUSA | DCM   | surface <sup>1</sup> |
| 120     | nd             | 6.00   | 12.3  | 20.0 | 96.0  | 147   | 17.0 | 9.00  | 22.0 | 6.00 | 9.00        | 344   | 636                  |
| 121     | 51.2           | nd     | 3.99  | 59.8 | 183   | 114   | 21.9 | 0.450 | Nd   | 2.36 | 2.61        | 439   | 344                  |
| 123     | 145            | 3.00   | 0.20  | 60.0 | Nd    | Nd    | 102  | 18.0  | 84.0 | 3.00 | 3.00        | 419   | 505                  |
| 124     | 54.0           | 8.00   | 0.20  | 24.0 | Nd    | 10.5  | 19.0 | 3.00  | 13.0 | 3.00 | 3.00        | 138   | 444                  |
| 125     | 34.0           | 8.00   | 44.1  | 136  | 141   | 51.0  | 12.0 | Nd    | Nd   | 3.00 | 4.00        | 433   | 375                  |
| 128     | 75.0           | 5.00   | 0.201 | 69.0 | Nd    | 36.0  | 30.0 | 12.0  | 164  | 3.00 | 5.00        | 399   | 360                  |
| 129     | 36.0           | 14.0   | 54.1  | 126  | 108   | 12.0  | 50.0 | 15.0  | 106  | 4.00 | 7.00        | 532   | 371                  |
| 131     | 144            | 25.0   | 51.2  | 258  | Nd    | 39.0  | 34.0 | 18.0  | Nd   | 5.00 | 12.0        | 586   | 780                  |
| 132     | 19.0           | 3.00   | 6.43  | 33.0 | Nd    | 15.0  | 43.0 | 15.0  | Nd   | 3.00 | 3.00        | 140   | 131                  |
| 134     | 29.0           | 2.00   | 0.20  | 19.0 | Nd    | 16.5  | 52.0 | 15.0  | 3.00 | 3.00 | 3.00        | 143   | 236                  |
| 135     | 28.0           | 13.0   | 0.20  | 32.0 | Nd    | 52.0  | 51.0 | 16.0  | 6.00 | 3.00 | 3.00        | 204   | 207                  |
| 137     | 18.0           | 7.00   | 5.03  | 44.0 | 43.5  | 29.0  | 48.0 | 18.0  | 8.00 | 3.00 | 3.00        | 227   | 189                  |
| 138     | 21.0           | 12.0   | 0.20  | 40.0 | 144   | Nd    | 54.0 | 16.0  | 10.0 | 3.00 | 3.00        | 303   | 184                  |
| 140     | 14.0           | 7.00   | 0.20  | 47.0 | Nd    | 24.0  | 13.0 | 5.00  | 15.0 | 3.00 | 3.00        | 131   | 313                  |
| 141     | 21.0           | 6.00   | Nd    | 29.0 | 33.0  | 19.0  | 53.0 | 16.0  | 3.00 | 3.00 | 3.00        | 186   | 311                  |
| 143     | 17.0           | Nd     | Nd    | 34.0 | 43.5  | 30.0  | 38.0 | 20.0  | 8.00 | 3.00 | 3.00        | 197   | 226                  |
| 144     | 28.0           | 3.00   | Nd    | 31.0 | 73.5  | 58.0  | 45.0 | 18.0  | 13.0 | 3.00 | 3.00        | 276   | 302                  |
| 146     | 28.0           | 3.00   | 8.05  | 53.0 | Nd    | 25.0  | 63.0 | 18.0  | 7.00 | 3.00 | 3.00        | 211   | 330                  |
| 147     | 17.0           | 3.00   | nd    | 37.0 | nd    | 18.0  | 79.0 | 32.0  | 8.00 | 3.00 | 3.00        | 200   | 441                  |

Nd: non detected









■ PFBS ■ PFHxS ■ PFHpS ■ PFOS ■ PFHxA ■ PFHpA ■ PFOA ■ PFOA ■ PFDA ■ PFOA ■ PFOSA ■ N-MePFOSA

| Location                                                                   | Position       | Sample<br>date | n  | PFBS    | PFHxS       | PFOS        | PFBA     | PFPA | PFHxA  | РҒНрА | PFOA   | PFNA    | PFDA    | PFUnDA      | PFDoDA | FOSA   | NMeFOSA |
|----------------------------------------------------------------------------|----------------|----------------|----|---------|-------------|-------------|----------|------|--------|-------|--------|---------|---------|-------------|--------|--------|---------|
| ARTIC AND GREENLAND                                                        |                |                |    |         |             |             |          |      |        |       |        |         |         |             |        |        |         |
| Labrador Sea <sup>3</sup>                                                  | 56ºN-<br>52º W | 2004-<br>2006  |    | na      | na          | 9-12        | na       | na   | na     | na    | 55-75  | na      | na      | na          | na     | na     | na      |
| Bering straight <sup>4</sup>                                               | 76ºN-<br>70ºW  | 2008           | 4  | na      | na          | na          | na       | na   | na     | na    | 11-78  | na      | na      | na          | na     | na     | na      |
| Central Arctic O. and Arctic<br>Shelf <sup>5</sup> (top 100 m)             | <70⁰N          | 2012           | 47 | <5-40   | <5-22       | <5-343      | na       | na   | <5-150 | <5-49 | <5-294 | <5-253  | <5-142  | <5-92       | <5-88  | <5-156 | <5-3    |
| ATLANTIC                                                                   |                |                |    |         |             |             |          |      |        |       |        |         |         |             |        |        |         |
| Northeast Atlantic O. (DCM)                                                | 35-0º N        | 2011           | 20 | 4.6-140 | 0-25        | 0-68        | 16-520   | ng   | ng     | 0-140 | 0-89   | 13-190  | 5-1100  | 0-2100      | ng     | ng     | ng      |
| Southwest Atlantic O. (DCM)                                                | 0-40º S        | 2011           | 22 | 11-480  | 15-<br>680  | 1-110       | 190-9600 | ng   | ng     | 0-250 | 3.1-54 | 18-81   | 4.1-380 | 0-770       | ng     | ng     | ng      |
| Mediterranean<br>Central Mediterranean <sup>6</sup><br>(1400 m)<br>PACIFIC | 40ºN-9ºE       | 2014           | 0  | 5.4     |             | 18.1        | na       | 0    | 20     | 131   | 54     | 0       | 2.6     | 0           | 0      | 0      | 0       |
| Central to East Pacific O.<br>(deep water 4000 m) <sup>7</sup>             |                | 2002-<br>2003  |    | na      | 0.4-<br>0.6 | 3.2-3.4     | na       | na   | na     | na    | 45-56  | na      | na      | na          | na     | na     | na      |
| North Pacific O. (DCM)                                                     | 35-0º N        | 2011           | 19 | 0-145   | 0-140       | 0-226       | 20-230   | ng   | ng     | 0-220 | 0-150  | 5.3-100 | 0-48    | 0-320       | ng     | ng     | ng      |
| South Pacific O. (DCM)                                                     | 0-40º S        | 2011           | 6  | 0-120   | 0-16        | 2.2-<br>130 | 100-360  | ng   | ng     | 0-86  | 0-160  | 21-44   | 6-94    | 34-350      | ng     | ng     | ng      |
| Indian                                                                     |                |                |    |         |             |             |          |      |        |       |        |         |         |             |        |        |         |
| Indian O. (DCM)                                                            | 0-40º S        | 2011           | 14 | 3.3-260 | 4.2-<br>33  | 0-11        | 31-630   | ng   | ng     | 0-69  | 0-180  | 11-44   | 4.6-120 | 10-<br>2200 | ng     | ng     | ng      |

# Table S3. Comparison of PFAS concentrations (pg L<sup>-1</sup>) in deep seawaters from different ocean basins including values from the present study

Location with no citation and marked depth DCM refers to data from this study.



Figure S3. Eddy diffusion coefficients ( $K_{\rho}$ , m<sup>2</sup>s<sup>-1</sup>) at the surface and DCM depth

Top panel shows the value of  $K_{\rho}$  averaged for the top 5 to 15 m, corresponding to the surface diffusivity (shallower diffusivity is not considered due to variability induced by non-diffusion processes like waves and wind shear). Bottom panel shows the value of  $K_{\rho}$  at 105 m, close to the mean DCM depth during *Malaspina 2010* circumnavigation expedition.

Bars with  $\approx$  symbol have been diminished by a factor of 10 in order to ease the global comparison of all the measurements.

# Table S4. Mean relative error of modeled DCM concentration (%)

|           | Mean relative |
|-----------|---------------|
|           | error (%)     |
| PFBS      | 86            |
| PFHxS     | 71            |
| PFHpS     | 120           |
| PFOS      | 65            |
| PFHxA     | 65            |
| РҒНрА     | 89            |
| PFOA      | 63            |
| PFNA      | 88            |
| PFDA      | 100           |
| PFOSA     | 100           |
| N-MePFOSA | 100           |

The error is defined as,

 $\frac{C_{measured} - C_{predicted in the model}}{C_{predicted in the model}} \times 100$ 

In absolute values.



Figure S4. Absolute error of modelled DCM concentration per sub basin





Table S5. Turbulent fluxes (*F<sub>Eddy</sub>*, ng m<sup>-2</sup>day<sup>-1</sup>)

| u     | Surface Turbulent Fluxes |                          |                          |                          |                          |                          |                          |                          |                           | DCM Turbulent Fluxes     |                          |                          |                          |                          |                          |                          |                          |                          |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Stati | PFB<br>S                 | PFHx                     | PFHp                     | PFO                      | PFO<br>A                 | PFHx<br>A                | PFHp                     | PFN<br>A                 | PFD<br>A                  | PFB                      | PFHx                     | PFHp                     | PFO                      | PFO<br>A                 | PFHx<br>A                | PFHp                     | PFN                      | PFD                      |
| 2     | 8.85                     | 3.81                     | 8.62                     | 3.81                     | 5.98                     | 2.16                     | 5.98                     | 8.03                     | 3.81                      | 9.67                     | 2.35                     | 1.61                     | 4.16                     | 1.28                     | 1.34                     | 6.53                     | 8.76                     | 4.16                     |
| 3     | 10-4                     | 10-4                     | 10-6                     | 10-4                     | 10-4                     | 10-4                     | 10-4                     | 10-4                     | 10-3                      | 10-4                     | 10-4                     | 10-5                     | 10-4                     | 10-3                     | 10-3                     | 10-4                     | 10-4                     | 10-3                     |
| 7     | 3.73                     | 7.95                     | 1.36                     | 7.95                     | 2.55                     | 1.03                     | 2.55                     | 7.60                     | 4.19                      | 1.00                     | 2.77                     | 1.59                     | 2.14                     | 1.58                     | 4.09                     | 6.85                     | 2.04                     | 1.13                     |
|       | 10 <sup>-</sup><br>5 86  | 107                      | 10 <sup>9</sup><br>1 26  | 1.08                     | 10 <sup>-</sup><br>5 5 3 | 2 03                     | 10 °<br>5 5 3            | 10 <sup>-</sup><br>7 39  | 10 <sup>3</sup><br>2 37   | 2 07                     | 10 <sup>-9</sup><br>7 17 | 2 01                     | 3 82                     | 3 00<br>10 -             | 10 <sup>-9</sup><br>5.63 | 10 <sup>-9</sup><br>1.95 | 10 <sup>-+</sup><br>2.61 | 10 <sup>9</sup>          |
| 13    | 10 <sup>-7</sup>         | 10 <sup>-6</sup>         | 10-6                     | 10 <sup>-6</sup>         | 10 <sup>-7</sup>         | 10 <sup>-7</sup>         | 10 <sup>-7</sup>         | 10 <sup>-6</sup>         | 10 <sup>-5</sup>          | 10 <sup>-4</sup>         | 10 <sup>-5</sup>         | 10 <sup>-5</sup>         | 10 <sup>-4</sup>         | 10 <sup>-4</sup>         | 10 <sup>-5</sup>         | 1.55<br>10 <sup>-4</sup> | 10 <sup>-3</sup>         | 10 <sup>-3</sup>         |
| 17    | 2.22                     | 5.42                     | 6.40                     | 5.42                     | 2.64                     | 1.17                     | 2.64                     | 2.49                     | 1.10                      | 8.01                     | 2.88                     | 6.24                     | 1.96                     | 2.68                     | 3.12                     | 9.53                     | 9.00                     | 3.98                     |
| 17    | 10-3                     | 10-2                     | 10-6                     | 10-2                     | 10-4                     | 10-2                     | 10-4                     | 10-4                     | 10-3                      | 10-4                     | 10-3                     | 10-4                     | 10-2                     | 10-4                     | 10-4                     | 10-5                     | 10-5                     | 10-4                     |
| 20    | 2.04                     | 4.52                     | 3.44                     | 4.52                     | 1.89                     | 4.84                     | 1.89                     | 4.32                     | 2.55                      | 2.75                     | 6.54                     | 1.73                     | 6.10                     | 1.08                     | 2.53                     | 2.56                     | 5.84                     | 3.45                     |
|       | 10 <sup>-0</sup><br>3 21 | $10^{-5}$                | 10 <sup>-5</sup><br>2 9/ | $10^{-5}$                | $10^{-7}$                | 10**                     | $10^{-7}$                | 10 <sup>-7</sup><br>3 25 | 10 <sup>-0</sup>          | 10 <sup>-0</sup><br>7 03 | 10 <sup>-0</sup><br>8 76 | 10 <sup>-0</sup>         | 10 <sup>-5</sup><br>5 56 | 10 <sup>-0</sup><br>9 17 | 10 <sup>-0</sup><br>2 80 | 10%                      | 10 <sup>-7</sup><br>7 11 | 10 <sup>-0</sup><br>2 77 |
| 23    | 10 <sup>-4</sup>         | 2.54<br>10 <sup>-3</sup> | 10 <sup>-6</sup>         | 10 <sup>-3</sup>         | 2.24<br>10 <sup>-4</sup> | 4.00<br>10 <sup>-4</sup> | 2.24<br>10 <sup>-4</sup> | 10 <sup>-3</sup>         | 10 <sup>-2</sup>          | 10 <sup>-6</sup>         | 10 <sup>-6</sup>         | 1.20<br>10 <sup>-6</sup> | 10 <sup>-5</sup>         | 10 <sup>-6</sup>         | 2.00<br>10 <sup>-6</sup> | 4.50<br>10 <sup>-6</sup> | 10 <sup>-5</sup>         | 10 <sup>-4</sup>         |
| 20    | 9.20                     | 3.75                     | 3.40                     | 3.75                     | 1.45                     | 3.11                     | 1.45                     | 1.51                     | 8.43                      | 3.49                     | 1.18                     | 2.38                     | 1.42                     | 8.70                     |                          | 5.50                     | 5.73                     | 3.19                     |
| 29    | 10-5                     | 10-3                     | 10-6                     | 10-3                     | 10-4                     | 10-4                     | 10-4                     | 10-4                     | 10-5                      | 10-6                     | 10-5                     | 10-6                     | 10-4                     | 10-6                     | -                        | 10-6                     | 10-6                     | 10-6                     |
| 32    | 4.97                     | 3.19                     | 3.31                     | 3.19                     | 1.80                     | 3.12                     | 1.80                     | 2.78                     | 1.49                      | 5.00                     | 3.14                     | 4.60                     | 3.20                     | 4.94                     | -                        | 1.81                     | 2.79                     | 1.50                     |
|       | 10-4                     | 10 <sup>-3</sup><br>3 03 | 10-5                     | 10 <sup>-3</sup>         | 10 <sup>-4</sup><br>8 22 | 10 <sup>-4</sup><br>1 07 | 10 <sup>-4</sup><br>8 22 | 10 <sup>-5</sup><br>7 16 | 10 <sup>-5</sup><br>8 1 2 | 10-3                     | 10 <sup>-5</sup>         | 10.0                     | 10 <sup>-4</sup>         | 10 <sup>-5</sup><br>5.67 |                          | 10 <sup>-5</sup><br>1.26 | 10 <sup>-4</sup><br>1 00 | 10 <sup>-4</sup>         |
| 37    | -                        | 3.03<br>10 <sup>-4</sup> | 4.40<br>10 <sup>-6</sup> | 10 <sup>-4</sup>         | 10 <sup>-6</sup>         | 10 <sup>-5</sup>         | 10 <sup>-6</sup>         | 10 <sup>-6</sup>         | 10 <sup>-6</sup>          | -                        | 10 <sup>-5</sup>         | 4.30<br>10 <sup>-6</sup> | 4.03<br>10 <sup>-4</sup> | 10 <sup>-5</sup>         | -                        | 1.20<br>10 <sup>-5</sup> | 1.05<br>10 <sup>-5</sup> | 1.24<br>10 <sup>-5</sup> |
| 20    | 1.56                     | 1.08                     | 2.84                     | 1.08                     | 3.77                     | 1.52                     | 3.77                     | 4.56                     | 3.49                      | 2.64                     | 2.57                     | 2.89                     | 1.83                     | 1.45                     |                          | 6.38                     | 7.72                     | 5.91                     |
| 30    | 10-4                     | 10-3                     | 10-5                     | 10-3                     | 10-5                     | 10-4                     | 10-5                     | 10-5                     | 10-5                      | 10-4                     | 10-4                     | 10-5                     | 10-3                     | 10-4                     | -                        | 10-5                     | 10-5                     | 10-5                     |
| 40    | 1.06                     | 3.65                     | 8.15                     | 3.65                     | 1.89                     | 7.92                     | 1.89                     | 8.51                     | 3.47                      | 1.48                     | 1.11                     | 6.12                     | 5.10                     | 4.11                     | 8.32                     | 2.65                     | 1.19                     | 4.85                     |
|       | 10 <sup>-3</sup>         | 10 <sup>-3</sup>         | 10 <sup>-7</sup>         | 10 <sup>-3</sup>         | 10 <sup>-4</sup>         | 10 <sup>-4</sup>         | 10 <sup>-4</sup>         | 10 <sup>-5</sup>         | 10 <sup>-5</sup>          | 10 <sup>-4</sup>         | 10-4                     | 10 <sup>-0</sup>         | 10 <sup>-4</sup>         | $10^{-5}$                | 10°<br>2.05              | 10 <sup>-5</sup>         | 10 <sup>-3</sup>         | 10 <sup>-0</sup>         |
| 41    | 1.05<br>10 <sup>-4</sup> | 1.51<br>10 <sup>-3</sup> | 5.54<br>10 <sup>-4</sup> | 1.51<br>10 <sup>-3</sup> | 2.20<br>10 <sup>-4</sup> | 1.79<br>10 <sup>-4</sup> | 2.20<br>10 <sup>-4</sup> | 9.04<br>10 <sup>-5</sup> | 2.02<br>10 <sup>-4</sup>  | 2.87<br>10 <sup>-4</sup> | 4.90<br>10 <sup>-4</sup> | 2.41<br>10 <sup>-4</sup> | 4.15<br>10 <sup>-3</sup> | 5.20<br>10 <sup>-4</sup> | 5.05<br>10 <sup>-4</sup> | 0.00<br>10 <sup>-4</sup> | 2.09<br>10 <sup>-4</sup> | 7.10<br>10 <sup>-4</sup> |
| 42    | 3.53                     | 5.86                     | 4.39                     | 5.86                     | 3.89                     | 1.27                     | 3.89                     | 2.87                     | 1.77                      | 3.63                     | 1.30                     | 9.38                     | 6.03                     | 5.65                     | 5.16                     | 4.00                     | 2.95                     | 1.82                     |
| 43    | 10-4                     | 10-3                     | 10-6                     | 10-3                     | 10-4                     | 10-3                     | 10-4                     | 10-4                     | 10-4                      | 10-4                     | 10-3                     | 10-5                     | 10-3                     | 10-4                     | 10-5                     | 10-4                     | 10-4                     | 10-4                     |
| 44    | 1.08                     | 7.77                     | 8.03                     | 7.77                     | 1.55                     | 9.19                     | 1.55                     | 2.18                     | 8.24                      | 2.70                     | 2.30                     | 1.33                     | 1.95                     | 1.51                     | 1.06                     | 3.88                     | 5.45                     | 2.06                     |
|       | 10 <sup>-5</sup>         | 10-5                     | 10 <sup>-6</sup>         | 10-5                     | 10 <sup>-6</sup>         | 10 <sup>-6</sup>         | 10 <sup>-</sup> °        | 10 <sup>-</sup><br>⊾ 27  | 10 <sup>-7</sup>          | 10 <sup>-4</sup>         | 10 <sup>-4</sup>         | 10 <sup>-5</sup>         | 10-3                     | 10 <sup>-4</sup>         | 10 <sup>-5</sup>         | 10 <sup>-5</sup>         | 10 <sup>-5</sup>         | 10-5                     |
| 46    | 1.22<br>10 <sup>-6</sup> | 1.40<br>10 <sup>-5</sup> | 1.54<br>10 <sup>-5</sup> | 1.40<br>10 <sup>-5</sup> | 9.52<br>10 <sup>-7</sup> | 9.34<br>10 <sup>-7</sup> | 9.52<br>10 <sup>-7</sup> | 5.27<br>10 <sup>-6</sup> | 2.77<br>10 <sup>-5</sup>  | 3.38<br>10 <sup>-5</sup> | 2.74<br>10 <sup>-5</sup> | 1.79<br>10 <sup>-5</sup> | 4.10<br>10 <sup>-4</sup> | 1.03<br>10 <sup>-4</sup> | 1.80<br>10 <sup>-5</sup> | 2.79<br>10 <sup>-5</sup> | 1.55<br>10 <sup>-4</sup> | 8.12<br>10 <sup>-4</sup> |
|       | 2.11                     | 1.14                     | 7.92                     | 1.14                     | 1.11                     | 1.18                     | 1.11                     | 8.61                     | 6.82                      | 5.18                     | 2.89                     | 1.09                     | 2.81                     | 7.66                     | 2.94                     | 2.73                     | 2.12                     | 1.68                     |
| 47    | 10-6                     | 10-5                     | 10-6                     | 10-5                     | 10-6                     | 10-6                     | 10-6                     | 10-6                     | 10-5                      | 10-5                     | 10-5                     | 10-5                     | 10-4                     | 10-5                     | 10-5                     | 10-5                     | 10-4                     | 10-3                     |
| 50    | 2.22                     | 7.53                     | 9.78                     | 7.53                     | 8.26                     | 1.21                     | 8.26                     | 1.76                     | 6.03                      | 9.15                     | 4.97                     | 8.17                     | 3.10                     | 6.55                     | 4.23                     | 3.40                     | 7.27                     | 2.48                     |
|       | 10-6                     | 10 <sup>-6</sup>         | 10-6                     | 10 <sup>-6</sup>         | 10-7                     | 10-6                     | 10-7                     | 10 <sup>-6</sup>         | 10-6                      | 10-5                     | 10-5                     | 10 <sup>-6</sup>         | 10-4                     | 10-5                     | 10-5                     | 10-5                     | 10-5                     | 10-4                     |
| 53    | 4.49<br>10 <sup>-6</sup> | 2.92<br>10 <sup>-8</sup> | 1.75<br>10 <sup>-5</sup> | 8.38<br>10 <sup>-6</sup> | 6.71<br>10 <sup>-7</sup> | 1.17<br>10 <sup>-6</sup> | 6.71<br>10 <sup>-7</sup> | 8.05<br>10 <sup>-7</sup> | 5.15<br>10 <sup>-6</sup>  | 2.30<br>10 <sup>-4</sup> | 6.02<br>10 <sup>-5</sup> | 1.52<br>10 <sup>-5</sup> | 4.29<br>10 <sup>-4</sup> | 1.14<br>10 <sup>-4</sup> | 1.10<br>10 <sup>-4</sup> | 3.44<br>10 <sup>-5</sup> | 4.13<br>10 <sup>-5</sup> | 2.64<br>10 <sup>-4</sup> |
|       | 1.62                     | 8.38                     | 5.82                     | 8.07                     | 1.17                     | 1.09                     | 1.17                     | 2.48                     | 1.68                      | 3.22                     | 2.16                     | 4.62                     | 1.60                     | 7.41                     | 9.99                     | 2.32                     | 4.94                     | 3.33                     |
| 55    | 10 <sup>-6</sup>         | 10-6                     | 10-6                     | 10 <sup>-6</sup>         | 10-6                     | 10-6                     | 10-6                     | 10 <sup>-6</sup>         | 10-5                      | 10-5                     | 10-5                     | 10 <sup>-6</sup>         | 10-4                     | 10-5                     | 10-5                     | 10-5                     | 10 <sup>-5</sup>         | 10-4                     |
| 57    | 1.75                     | 8.07                     | 9.14                     | 7.88                     | 1.68                     | 9.52                     | 1.68                     | 1.93                     | 9.07                      | 2.88                     | 1.57                     | 6.42                     | 1.30                     | 1.12                     | 5.66                     | 2.76                     | 3.17                     | 1.49                     |
|       | 10-5                     | 10 <sup>-6</sup>         | 10 <sup>-6</sup>         | 10-5                     | 10-5                     | 10 <sup>-6</sup>         | 10-5                     | 10-4                     | 10 <sup>-4</sup>          | 10-5                     | 10-5                     | 10 <sup>-6</sup>         | 10 <sup>-4</sup>         | 10 <sup>-4</sup>         | 10-5                     | 10-5                     | 10 <sup>-4</sup>         | 10-3                     |
| 58    | 4.16<br>10 <sup>-6</sup> | 7.88<br>10 <sup>-5</sup> | 5.95<br>10 <sup>-6</sup> | 4.71<br>10 <sup>-6</sup> | 8.93<br>10 <sup>-7</sup> | 5.88<br>10 <sup>-7</sup> | 8.93<br>10 <sup>-7</sup> | 1.09<br>10 <sup>-5</sup> | 4.30<br>10 <sup>-5</sup>  | 1.30<br>10 <sup>-4</sup> | 1.93<br>10 <sup>-5</sup> | 4.72<br>10 <sup>-6</sup> | 1.55<br>10 <sup>-4</sup> | 1.01<br>10 <sup>-4</sup> | 6.27<br>10 <sup>-5</sup> | 2.93<br>10 <sup>-5</sup> | 3.59<br>10 <sup>-4</sup> | 1.43<br>10 <sup>-3</sup> |
|       | 4.23                     | 4.71                     | 3.37                     | 2.49                     | 6.63                     | 4.45                     | 6.63                     | 8.28                     | 2.27                      | 1.41                     | 1.48                     | 2.25                     | 8.31                     | 1.30                     | 5.36                     | 2.21                     | 2.76                     | 7.56                     |
| 60    | 10-6                     | 10-6                     | 10-5                     | 10-5                     | 10-7                     | 10-7                     | 10-7                     | 10-6                     | 10-5                      | 10-4                     | 10-5                     | 10 <sup>-5</sup>         | 10-4                     | 10-4                     | 10-5                     | 10-5                     | 10-4                     | 10-4                     |
| 63    | 6.69                     | 2.49                     | 7.00                     | 2.14                     | 1.51                     | 3.35                     | 1.51                     | 1.10                     | 1.10                      | 9.82                     | 4.91                     | 6.80                     | 3.14                     | 5.40                     | _                        | 2.21                     | 1.62                     | 1.62                     |
|       | 10-6                     | 10-5                     | 10 <sup>-7</sup>         | 10-5                     | 10-5                     | 10-6                     | 10-5                     | 10-5                     | 10-4                      | 10 <sup>-5</sup>         | 10-5                     | 10 <sup>-7</sup>         | 10-4                     | 10-5                     |                          | 10-4                     | 10-4                     | 10 <sup>-3</sup>         |
| 64    | 2.50<br>10 <sup>-5</sup> | 2.14<br>10 <sup>-5</sup> | 3.97<br>10 <sup>-6</sup> | 2.54<br>10 <sup>-5</sup> | 9.61<br>10 <sup>-7</sup> | 1.31<br>10 <sup>-6</sup> | 9.61<br>10 <sup>-7</sup> | 3.64<br>10 <sup>-6</sup> | 1.49<br>10 <sup>-5</sup>  | 5.66<br>10-4             | 2.96<br>10 <sup>-5</sup> | 3.79<br>10 <sup>-6</sup> | 5.75<br>10 <sup>-4</sup> | 9.71<br>10 <sup>-5</sup> | -                        | 2.18<br>10 <sup>-5</sup> | 8.26<br>10 <sup>-5</sup> | 3.37<br>10 <sup>-4</sup> |
|       | 3.67                     | 2.54                     | 3.90                     | 2.29                     | 7.20                     | 1.56                     | 7.20                     | 1.92                     | 2.30                      | 2.04                     | 8.68                     | 3.93                     | 1.28                     | 2.39                     | 3.01                     | 4.00                     | 1.07                     | 1.28                     |
| 70    | 10-6                     | 10-5                     | 10-5                     | 10-5                     | 10-7                     | 10-6                     | 10-7                     | 10-6                     | 10-6                      | 10-4                     | 10-5                     | 10-5                     | 10-3                     | 10-4                     | 10-4                     | 10-5                     | 10-4                     | 10-4                     |
| 71    | 3.97                     | 2.29                     | 1.15                     | 1.28                     | -                        | 6.90                     | -                        | 9.22                     | 1.79                      | 4.07                     | 7.07                     | 2.15                     | 1.32                     | 1.65                     | -                        | -                        | 9.45                     | 1.84                     |
|       | 10-5                     | 10-5                     | 10-6                     | 10-4                     |                          | 10-6                     |                          | 10-6                     | 10-5                      | 10-4                     | 10-5                     | 10-5                     | 10-3                     | 10-4                     |                          |                          | 10-5                     | 10-4                     |
| 74    | 9.58<br>10-7             | 1.28<br>10-4             | 2.76                     | 5.08<br>10 <sup>-5</sup> | -                        | 1.75<br>10-6             | -                        | 6.82                     | 2.08                      | 4.11<br>10 <sup>-5</sup> | 7.50<br>10 <sup>-5</sup> | 3.65                     | 2.18                     | 2.24                     | -                        | -                        | 2.92                     | 8.91<br>10-4             |
|       | 1.77                     | 5.08                     | 2.35                     | 10 <sup>°</sup><br>8.72  | 1.59                     | 6.71                     | 1.59                     | 1.20°                    | 5.04                      | 1.05                     | 3.99                     | 3.15                     | 10°<br>5.18              | 2.68                     | 1.50                     | 9.43                     | 7.13                     | 2.99                     |
| 75    | 10-6                     | 10-5                     | 10-5                     | 10-6                     | 10-6                     | 10-7                     | 10-6                     | 10-5                     | 10-5                      | 10-4                     | 10-5                     | 10-5                     | 10-4                     | 10-4                     | 10-4                     | 10-5                     | 10-4                     | 10-3                     |

| u       | Surface Turbulent Fluxes |                          |                          |                  |                          |                          |                          |                          |                          | DCM Turbulent Fluxes     |                          |                          |                          |                          |                          |                          |                          |                          |
|---------|--------------------------|--------------------------|--------------------------|------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| itati   | PFB                      | PFHx                     | PFHp                     | PFO              | PFO                      | PFHx                     | PFHp                     | PFN                      | PFD                      | PFB                      | PFHx                     | PFHp                     | PFO                      | PFO                      | PFHx                     | PFHp                     | PFN                      | PFD                      |
| S       | S                        | S                        | S                        | S                | Α                        | Α                        | Α                        | Α                        | Α                        | <u> </u>                 | S                        | S                        | S                        | Α                        | Α                        | Α                        | Α                        | Α                        |
| 77      | 7.06                     | 8.72                     | 6.02                     | 4.94             | 3.57                     | 4.32                     | 3.57                     | 1.28                     | 1.74                     | 1.40                     | 8.54                     | 2.64                     | 9.77                     | 2.37                     | 4.81                     | 7.05                     | 2.52                     | 3.43                     |
|         | 10 <sup>-5</sup>         | 10-0                     | 10-0                     | 10-4             | 10-5                     | 10 <sup>-5</sup>         | 10-5                     | 10-4                     | 10-4                     | 10-4                     | 10 <sup>-5</sup>         | 10-5                     | 10-4                     | 10-4                     | 10-4                     | 10 <sup>-5</sup>         | 10 <sup>-4</sup>         | 10-4                     |
| 82      | 5.54<br>10-4             | 4.94                     | 7.48<br>10-6             | 1.33             | 1.57                     | 6.72<br>10-5             | 1.57                     | 8.68<br>10-5             | 2.17                     | 2.33                     | 2.83                     | 7.02<br>10-6             | 3.08                     | 7.40<br>10-5             | -                        | 6.59<br>10-6             | 3.65                     | 9.1Z                     |
|         | 10                       | 10 .                     | 10 -                     | 1 2 /            | 10°                      | 202                      | 5 15                     | 2 00                     | 10.                      | 10                       | 1 22                     | 5 05                     | 1.06                     | 2.06                     | 1 1 1                    | 752                      | 5.67                     | 7 95                     |
| 88      | -                        | 7.33<br>10 <sup>-4</sup> | 0.05<br>10 <sup>-6</sup> | 1.54             | 10-5                     | 0.44<br>10 <sup>-6</sup> | 10 <sup>-5</sup>         | 3.00<br>10 <sup>-5</sup> | 10-4                     | -                        | 1.25                     | 10-7                     | 1.90<br>10 <sup>-5</sup> | 2.90<br>10 <sup>-6</sup> | 1.11<br>10 <sup>-6</sup> | 7.52<br>10 <sup>-6</sup> | 10 <sup>-6</sup>         | 7.85<br>10 <sup>-5</sup> |
|         |                          | 1.34                     | 9.88                     | 3.34             | 2.86                     | 2.11                     | 2.86                     | 2.49                     | 1.50                     |                          | 3.13                     | 2.03                     | 4.95                     | 9.96                     | 10                       | 4.24                     | 3.70                     | 2.22                     |
| 90      | -                        | 10-4                     | 10-5                     | 10-4             | 10-4                     | 10-5                     | 10-4                     | 10-5                     | 10-4                     | -                        | 10-5                     | 10-4                     | 10-4                     | 10-5                     | -                        | 10-4                     | 10-5                     | 10-4                     |
|         | 3.06                     | 3.34                     | 7.58                     | 1.48             | 9.11                     | 7.48                     | 9.11                     | 4.83                     | 1.58                     | 1.92                     | 4.70                     | 4.99                     | 9.32                     | 1.92                     |                          | 5.73                     | 3.03                     | 9.96                     |
| 94      | 10-5                     | 10-4                     | 10-5                     | 10-3             | 10-4                     | 10-5                     | 10-4                     | 10-4                     | 10-3                     | 10-6                     | 10-6                     | 10-5                     | 10-5                     | 10-5                     | -                        | 10-5                     | 10-5                     | 10-5                     |
| 07      |                          | 1.48                     | 2.20                     | 1.55             | 1.61                     | 4.17                     | 1.61                     | 7.74                     | 1.31                     |                          | 3.31                     | 4.54                     | 1.23                     | 1.18                     | 1.13                     | 1.28                     | 6.14                     | 1.04                     |
| 97      | -                        | 10-3                     | 10-6                     | 10-3             | 10-4                     | 10-5                     | 10-4                     | 10-5                     | 10-4                     | -                        | 10-5                     | 10-4                     | 10-3                     | 10-4                     | 10-4                     | 10-4                     | 10-5                     | 10-4                     |
| 10      | 3.54                     | 1.55                     | 6.06                     | 1.55             | 3.17                     | 8.86                     | 3.17                     | 1.58                     | 3.08                     | 4.37                     | 1.09                     | 1.10                     | 1.91                     | 2.83                     | 4.93                     | 3.92                     | 1.95                     | 3.79                     |
| 2       | 10-5                     | 10 <sup>-3</sup>         | 10 <sup>-5</sup>         | 10-4             | 10-5                     | 10-6                     | 10 <sup>-5</sup>         | 10 <sup>-5</sup>         | 10-5                     | 10 <sup>-5</sup>         | 10 <sup>-5</sup>         | 10 <sup>-5</sup>         | 10-4                     | 10-5                     | 10-5                     | 10 <sup>-5</sup>         | 10-5                     | 10-5                     |
| 10      | 5.69                     | 1.55                     | -                        | 2.05             | 6.48                     | 3.26                     | 6.48                     | 4.15                     | 8.08                     | 3.42                     | 1.96                     | -                        | 1.23                     | 4.53                     | -                        | 3.89                     | 2.49                     | 4.85                     |
| 3       | 10-5                     | 10-4                     |                          | 10-4             | 10-5                     | 10-4                     | 10-5                     | 10-5                     | 10-5                     | 10-4                     | 10-3                     |                          | 10 <sup>-3</sup>         | 10-4                     |                          | 10-4                     | 10-4                     | 10-4                     |
| 10      | 3.02                     | 2.05                     | -                        | 3.85             | 5.23                     | 1.37                     | 5.23                     | 4.82                     | 6.05                     | 2.24                     | 1.02                     | -                        | 2.86                     | 6.57                     | -                        | 3.89                     | 3.58                     | 4.50                     |
| 7       | 10-4                     | 10 <sup>-4</sup>         | 1.00                     | 10-4             | 10 <sup>-4</sup>         | 10-4                     | 10-4                     | 10 <sup>-5</sup>         | 10-3                     | 10-4                     | 10 <sup>-4</sup>         | 1.01                     | 10-4                     | 10-5                     | 7.00                     | 10 <sup>-4</sup>         | 10 <sup>-3</sup>         | 10 <sup>-3</sup>         |
| 10      | 3.45                     | 3.85<br>10-4             | 1.86                     | 7.45<br>10-5     | 2.50                     | 6.07<br>10-5             | 2.56                     | 2.65                     | 3.19                     | 3.04                     | 5.35<br>10-5             | 1.01                     | 6.57<br>10-5             | 2.54                     | 7.99                     | 2.25                     | 2.33                     | 2.81                     |
| 9<br>11 | 103                      | 10 .                     | 10 .                     | 1 10             | 10 <sup>°</sup><br>7 9 7 | 2.68                     | 7 97                     | 1 90                     | 105                      | 10 <sup>9</sup>          | 10 <sup>°</sup>          | 10 5                     | 10°                      | 2 0 2                    | 10 2                     | 2 10 5                   | 2020                     | 10°<br>5 57              |
| 2       | 1.52                     | 7.45<br>10 <sup>-5</sup> | -                        | 1.19             | 7.07<br>10 <sup>-5</sup> | 5.00<br>10 <sup>-5</sup> | 7.07<br>10 <sup>-5</sup> | 1.09<br>10 <sup>-5</sup> | 1.27<br>10 <sup>-5</sup> | 5.78<br>10 <sup>-5</sup> | 1.01<br>10 <sup>-5</sup> | -                        | 5.22<br>10 <sup>-5</sup> | 2.02<br>10 <sup>-5</sup> | 4.65<br>10 <sup>-5</sup> | 5.45<br>10 <sup>-5</sup> | 0.29<br>10 <sup>-6</sup> | 5.57<br>10 <sup>-6</sup> |
| 11      | 2.33                     | 1.19                     | 1.33                     | 4.38             | 2.36                     | 9.03                     | 2.36                     | 4.85                     | 2.86                     | 1.55                     | 6.01                     | 8.17                     | 2.91                     | 9.46                     | 10                       | 1.57                     | 3.22                     | 1.90                     |
| 6       | 10-4                     | 10-4                     | 10-5                     | 10-4             | 10-4                     | 10 <sup>-4</sup>         | 10 <sup>-4</sup>         | 10-5                     | 10-4                     | 10 <sup>-4</sup>         | 10 <sup>-4</sup>         | 10 <sup>-5</sup>         | 10-4                     | 10 <sup>-5</sup>         | -                        | 10 <sup>-4</sup>         | 10-5                     | 10-4                     |
| 11      | 5.19                     | 4.38                     | 2.41                     | 1.67             | 1.09                     | 1.39                     | 1.09                     | 8.58                     | 8.34                     | 1.73                     | 4.65                     | 3.86                     | 5.59                     | 1.80                     | 1.88                     | 3.63                     | 2.86                     | 2.78                     |
| 7       | 10-5                     | 10-4                     | 10-6                     | 10-4             | 10-4                     | 10-4                     | 10-4                     | 10-6                     | 10-5                     | 10-5                     | 10-5                     | 10-6                     | 10-5                     | 10-5                     | 10-4                     | 10-5                     | 10-6                     | 10-5                     |
| 12      | 3.86                     | 1.67                     | 4.57                     | 5.79             | 5.68                     | 6.41                     | 5.68                     |                          | 1.68                     | 3.20                     | 5.30                     | 3.17                     | 4.79                     | 1.36                     | 1.43                     | 4.70                     |                          | 1.39                     |
| 1       | 10-5                     | 10-4                     | 10-7                     | 10-5             | 10-5                     | 10-5                     | 10-5                     | -                        | 10-5                     | <b>10</b> <sup>-5</sup>  | 10-5                     | 10-6                     | 10-5                     | 10-5                     | 10-4                     | 10-5                     | -                        | 10-5                     |
| 12      | 1.60                     | 5.79                     | 2.01                     | 9.06             | 1.71                     | 7.15                     | 1.71                     | _                        | 1.38                     | 2.70                     | 1.21                     | 3.52                     | 1.53                     | 7.42                     | 6.86                     | 2.89                     | _                        | 2.33                     |
| 3       | 10-4                     | 10-5                     | 10-7                     | 10-5             | 10-4                     | 10-5                     | 10-4                     |                          | 10-4                     | 10-5                     | 10-5                     | 10-6                     | 10 <sup>-5</sup>         | 10-6                     | 10-5                     | 10-5                     |                          | 10-5                     |
| 12      | 7.67                     | 9.06                     | 1.42                     | 7.88             | 5.08                     | 7.25                     | 5.08                     | 1.04                     | 4.56                     | 2.57                     | 2.43                     | 5.58                     | 2.64                     | 5.90                     | -                        | 1.70                     | 3.47                     | 1.53                     |
| 4       | 10-5                     | 10-5                     | 10-5                     | 10-5             | 10-5                     | 10-6                     | 10-5                     | 10-5                     | 10-5                     | 10-4                     | 10-5                     | 10-4                     | 10-4                     | 10-5                     | <b>C A A</b>             | 10-4                     | 10-5                     | 10-4                     |
| 12      | 4.15                     | 7.88                     | 1.42                     | 6.11             | 9.83                     | 4.37                     | 9.83                     | 1.64                     | 1.53                     | 1.26                     | 1.33                     | 1.30                     | 1.86                     | 4.65                     | 6.41                     | 2.99                     | 4.98                     | 4.65                     |
| 5       | 10 <sup>-5</sup><br>0 7E | 10 <sup>-9</sup>         | 10°                      | 10 <sup>5</sup>  | 10 °                     | 10°<br>0 25              | 10°                      | 10°<br>2.14              | 10 <sup>-5</sup>         | 107                      | 10 3                     | 10 4                     | 10 -                     | 10 <sup>5</sup>          | 10 4                     | 10 <sup>°</sup>          | 10°                      | 10 <sup>-5</sup>         |
| 0<br>12 | 0.75<br>10-5             | 10-5                     | 5.65<br>10-7             | 1.45             | 1.90                     | 0.25<br>10 <sup>-6</sup> | 1.90                     | 5.14<br>10-5             | 2.42<br>10-4             | 1.27                     | 1.20                     | 4.60                     | 2.10                     | 0.40<br>10-5             | -                        | 2.07<br>10 <sup>-5</sup> | 4.54<br>10-5             | 5.51<br>10-4             |
| 13      | 4 93                     | 1 45                     | 1 90                     | 5 4 3            | 1 16                     | 3 40                     | 1 16                     | 2 55                     | 8 70                     | 2 17                     | 1 50                     | 2 50                     | 2 39                     | 2 99                     | 1 1 2                    | 5 12                     | 1 1 2                    | 3 83                     |
| 1       | 4.55<br>10 <sup>-4</sup> | 10 <sup>-4</sup>         | 10-8                     | 10 <sup>-4</sup> | 10-4                     | 10 <sup>-5</sup>         | 10 <sup>-4</sup>         | 2.55<br>10 <sup>-5</sup> | 10 <sup>-4</sup>         | 10 <sup>-5</sup>         | 10 <sup>-6</sup>         | 2.50<br>10 <sup>-8</sup> | 2.55<br>10 <sup>-5</sup> | 2.55<br>10 <sup>-6</sup> | 10 <sup>-6</sup>         | 10 <sup>-6</sup>         | 10-6                     | 10 <sup>-5</sup>         |
| 13      | 5.70                     | 5.43                     | 3.12                     | 5.36             | 5.03                     | 1.34                     | 5.03                     |                          | 1.01                     | 2.90                     | 6.82                     | 3.42                     | 2.73                     | 3.41                     | 2.64                     | 2.56                     | 10                       | 5.12                     |
| 4       | 10-6                     | 10-4                     | 10-7                     | 10-6             | 10-6                     | 10-6                     | 10-6                     | -                        | 10-6                     | 10 <sup>-5</sup>         | 10-6                     | 10-7                     | 10-5                     | 10-5                     | 10-4                     | 10-5                     | -                        | 10-6                     |
| 13      | 1.08                     | 5.36                     | 9.16                     | 2.20             | 1.45                     | 7.04                     | 1.45                     | 8.91                     | 5.63                     | 1.38                     | 9.00                     | 1.20                     | 2.82                     | 2.16                     |                          | 1.86                     | 1.14                     | 7.20                     |
| 7       | 10-5                     | 10-6                     | 10-7                     | 10-5             | 10-5                     | 10-6                     | 10-5                     | 10-6                     | 10-6                     | 10-5                     | 10-6                     | 10-7                     | 10-5                     | 10-5                     | -                        | 10-5                     | 10-5                     | 10-6                     |
| 14      | 5.89                     | 2.20                     |                          | 1.55             | 1.13                     | 7.07                     | 1.13                     | 4.71                     | 2.59                     | 1.20                     | 1.44                     |                          | 3.17                     | 2.50                     | 3.94                     | 2.31                     | 9.61                     | 5.29                     |
| 0       | 10 <sup>-5</sup>         | 10-5                     | -                        | 10-4             | 10-4                     | 10-6                     | 10-4                     | 10 <sup>-5</sup>         | 10-5                     | 10-5                     | 10 <sup>-6</sup>         | -                        | 10 <sup>-5</sup>         | 10-5                     | 10-5                     | 10-5                     | 10 <sup>-6</sup>         | 10-6                     |
| 14      | 5.96                     | 1.55                     | 3.59                     | 1.10             | 7.63                     | 5.58                     | 7.63                     | 2.61                     | 3.35                     | 1.56                     | 1.46                     | 3.36                     | 2.87                     | 2.14                     | -                        | 1.99                     | 6.80                     | 8.75                     |
| 3       | 10 <sup>-5</sup>         | 10-4                     | 10-5                     | 10-4             | 10-5                     | 10-6                     | 10-5                     | 10-5                     | 10-5                     | 10-4                     | 10-5                     | 10 <sup>-5</sup>         | 10-4                     | 10-4                     |                          | 10-4                     | 10 <sup>-5</sup>         | 10-5                     |
| 14      | 1.11                     | 1.10                     | 7.99                     | 2.92             | 3.24                     | 7.85                     | 3.24                     | 8.20                     | 2.46                     | 5.51                     | 3.88                     | 7.94                     | 1.45                     | 1.29                     | -                        | 1.61                     | 4.08                     | 1.22                     |
| 6       | 10 <sup>-8</sup>         | 10-4                     | 10-5                     | 10 <sup>-8</sup> | 10 <sup>-8</sup>         | 10 <sup>-9</sup>         | 10 <sup>-8</sup>         | 10 <sup>-9</sup>         | 10 <sup>-9</sup>         | 10-5                     | 10-5                     | 10-5                     | 10-4                     | 10-4                     |                          | 10-4                     | 10-5                     | 10-5                     |

Zero values (-) attend for a null turbulence due to; i) a concentration of the compound under LOD, ii) a depletion of the quantified compound because of the calculated ongoing diffusion iii) a diminution of the measured concentration too low for appreciating a variation and thus quantifying a flux, or iv) to a missing value of the eddy





| Station  | Foc Phyto | F <sub>oc Fecal</sub> | Total F <sub>oc</sub> |
|----------|-----------|-----------------------|-----------------------|
|          | 5.24      | 26.5                  | 31.7                  |
|          | 2.96      | 29.7                  | 32.6                  |
| 5        | 5.10      | 44.0                  | 49.1                  |
| 7        | 6.33      | 50.9                  | 57.3                  |
| 8        | 6.66      | 53.9                  | 60.6                  |
| 9        | 11.4      | 79.2                  | 90.7                  |
| 11       | 11.0      | 79.3                  | 90.3                  |
| 12       | 8.59      | 53.5                  | 62.1                  |
| 13       | 11.1      | 62.9                  | 74.0                  |
| 14       | 13.7      | 68.1                  | 81.7                  |
| 15       | 9.01      | 61.3                  | 70.4                  |
| 17       | 2.06      | 55.3                  | 57.3                  |
| 18       | 1.18      | 55.2                  | 56.4                  |
| 20       | 0.21      | 35.8                  | 36.0                  |
| 21       | 0.14      | 28.6                  | 28.8                  |
| 23       | 0.27      | 34.8                  | 35.1                  |
| 24       | 0.49      | 43.9                  | 44.4                  |
| 26       | 0.75      | 43.4                  | 44.2                  |
| 28       | 0.38      | 35.4                  | 35.8                  |
| 29       | 0.47      | 34.3                  | 34.8                  |
| 30       | 0.53      | 34.6                  | 35.2                  |
| 31       | 0.24      | 27.5                  | 27.7                  |
| 32       | 0.16      | 27.5                  | 27.7                  |
| 33       | 0.10      | 24.5                  | 24.6                  |
| 35       | 0.10      | 21.5                  | 21.0                  |
| 37       | 0.10      | 193                   | 193                   |
| 38       | 0.05      | 22.3                  | 22.4                  |
| 30       | 0.07      | 26.7                  | 26.8                  |
| <u> </u> | 0.09      | 20.7                  | 20.8                  |
| 40       | 0.13      | 23.4                  | 23.5                  |
| 41       | 0.21      | 24.2                  | 24.4                  |
| 42       | 0.51      | 23.5                  | 23.0                  |
| 45       | 0.79      | 51.5<br>41.2          | 52.1<br>42 7          |
| 44       | 2.43      | 41.Z                  | 43.7                  |
| 40       | 4.19      | 51.0                  | 55.Z                  |
| 47       | 2.27      | 43.4                  | 45.6                  |
| 49       | 0.97      | 38.6                  | 39.6                  |
| 50       | 0.60      | 384                   | 39.0                  |
| 52       | 0.25      | 20.8                  | 21.1                  |
| 53       | 0.87      | 31.3                  | 32.1                  |
| 55       | 0.21      | 19.0                  | 19.2                  |
| 57       | 0.18      | 17.0                  | 17.1                  |
| 58       | 0.18      | 16.8                  | 17.0                  |

Table S6. Organic carbon sinking fluxes (Foc, mg C m<sup>-2</sup>day<sup>-1</sup>)

| Station | F <sub>oc Phyto</sub> | $\mathbf{F}_{oc \; Fecal}$ | Total $\mathbf{F}_{oc}$ |
|---------|-----------------------|----------------------------|-------------------------|
| 137     | 0.40                  | 18.2                       | 18.6                    |
| 138     | 0.24                  | 14.2                       | 14.4                    |
| 140     | 0.14                  | 12.2                       | 12.3                    |
| 141     | 0.14                  | 13.4                       | 13.6                    |

All the values are extracted from Siegel et al. <sup>8</sup> database at the corresponding locations and month.

| ion  | PFHxS                 | PFOS                  | PFDS                  | PFBA                  | PFPeA                 | PFHxA                 | PFHpA                              | PFOA                  | PFDA                  | PFUnDA                | PFDoA     | PFTrA                 | PFTeA     |
|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------------|-----------------------|-----------------------|-----------------------|-----------|-----------------------|-----------|
| Stat |                       |                       |                       |                       |                       |                       | <b>F</b> <sub>Settling Phyto</sub> |                       |                       |                       |           |                       |           |
| 6    | 4.12 10-5             | 1.47 10 <sup>-2</sup> | -                     | -                     | 1.10 10-1             | -                     | 1.78 10 <sup>-1</sup>              | 5.76 10 <sup>-2</sup> | -                     | -                     | -         | -                     | -         |
| 13   | 1.91 10 <sup>-2</sup> | 5.45 10 <sup>-2</sup> | -                     | -                     | 3.59 10 <sup>-2</sup> | -                     | 4.08 10 <sup>-2</sup>              | 4.72 10 <sup>-2</sup> | -                     | -                     | -         | -                     | -         |
| 17   | 7.97 10 <sup>-3</sup> | 3.29 10 <sup>-1</sup> | 2.26 10 <sup>-4</sup> | 6.59 10 <sup>-2</sup> | 1.35 10 <sup>-2</sup> | -                     | 2.83 10 <sup>-2</sup>              | 1.57 10 <sup>-2</sup> | -                     | 1.00 10-3             | -         | -                     | -         |
| 18   | 4.92 10 <sup>-3</sup> | 2.83 10 <sup>-1</sup> | 6.03 10-4             | 3.91 10 <sup>-2</sup> | 2.31 10 <sup>-2</sup> | -                     | 2.08 10 <sup>-2</sup>              | 2.44 10 <sup>-2</sup> | -                     | 3.47 10-4             | -         | -                     | -         |
| 29   | -                     | 3.77 10 <sup>-3</sup> | -                     | -                     | 1.43 10 <sup>-2</sup> | -                     | 1.84 10 <sup>-2</sup>              | 7.08 10 <sup>-3</sup> | -                     | 5.35 10 <sup>-4</sup> | -         | -                     | -         |
| 31   | -                     | 1.72 10 <sup>-3</sup> | -                     | 2.15 10 <sup>-3</sup> | 6.24 10 <sup>-3</sup> | -                     | 7.90 10 <sup>-3</sup>              | 5.92 10 <sup>-3</sup> | -                     | 2.39 10 <sup>-4</sup> | -         | -                     | -         |
| 33   | 2.83 10 <sup>-5</sup> | 6.31 10 <sup>-4</sup> | -                     | 2.20 10-4             | 1.18 10 <sup>-3</sup> | -                     | 1.13 10 <sup>-3</sup>              | 8.51 10 <sup>-4</sup> | -                     | -                     | -         | -                     | -         |
| 35   | 7.58 10 <sup>-6</sup> | 8.17 10-4             | -                     | 7.25 10 <sup>-4</sup> | 3.83 10 <sup>-3</sup> | -                     | 4.49 10 <sup>-3</sup>              | 2.36 10 <sup>-3</sup> | -                     | 8.44 10 <sup>-5</sup> | -         | -                     | -         |
| 43   | -                     | 2.88 10 <sup>-3</sup> | -                     | 1.32 10 <sup>-2</sup> | 4.92 10 <sup>-3</sup> | -                     | 6.83 10 <sup>-3</sup>              | 2.73 10 <sup>-2</sup> | -                     | 9.63 10 <sup>-5</sup> | -         | -                     | -         |
| 46   | 2.60 10 <sup>-3</sup> | 2.33 10-1             | -                     | -                     | 1.21 10 <sup>-2</sup> | -                     | 1.41 10 <sup>-2</sup>              | 1.21 10 <sup>-2</sup> | 1.25 10 <sup>-3</sup> | 5.31 10 <sup>-3</sup> | -         | -                     | -         |
| 49   | 1.63 10 <sup>-4</sup> | 5.39 10 <sup>-2</sup> | -                     | 3.42 10 <sup>-3</sup> | 1.50 10 <sup>-2</sup> | 1.67 10-4             | 1.36 10 <sup>-2</sup>              | 1.46 10 <sup>-2</sup> | -                     | 3.18 10 <sup>-3</sup> | -         | -                     | -         |
| 53   | 1.18 10 <sup>-4</sup> | 3.79 10 <sup>-3</sup> | -                     | -                     | 1.83 10 <sup>-2</sup> | -                     | 3.00 10-2                          | 1.28 10 <sup>-2</sup> | -                     | 1.80 10 <sup>-3</sup> | -         | -                     | -         |
| 55   | -                     | 2.96 10 <sup>-3</sup> | -                     | -                     | 3.95 10 <sup>-3</sup> | -                     | 4.47 10 <sup>-3</sup>              | 3.22 10 <sup>-3</sup> | -                     | 1.15 10 <sup>-5</sup> | -         | -                     | -         |
| 57   | 5.59 10 <sup>-4</sup> | 1.34 10 <sup>-2</sup> | -                     | 3.15 10 <sup>-4</sup> | 1.79 10 <sup>-3</sup> | 2.11 10 <sup>-3</sup> | 2.33 10 <sup>-3</sup>              | 2.11 10 <sup>-3</sup> | 2.53 10 <sup>-5</sup> | 4.70 10 <sup>-4</sup> | -         | -                     | -         |
| 58   | -                     | 3.13 10 <sup>-3</sup> | -                     | 1.22 10 <sup>-3</sup> | 9.19 10 <sup>-3</sup> | -                     | 8.03 10 <sup>-3</sup>              | 5.47 10 <sup>-3</sup> | -                     | -                     | -         | -                     | -         |
| 71   | -                     | 5.51 10 <sup>-3</sup> | -                     | 8.11 10 <sup>-3</sup> | 7.36 10 <sup>-2</sup> | -                     | 1.23 10 <sup>-1</sup>              | 3.44 10 <sup>-2</sup> | -                     | -                     | -         | -                     | -         |
| 74   | -                     | 2.63 10 <sup>-1</sup> | -                     | 4.63 10 <sup>-2</sup> | 2.83 10 <sup>-1</sup> | -                     | 2.27 10 <sup>-1</sup>              | 2.67 10 <sup>-1</sup> | -                     | -                     | -         | -                     | -         |
| 77   | 5.62 10 <sup>-2</sup> | 8.13 10 <sup>-1</sup> | -                     | 4.36 10 <sup>-1</sup> | 1.12 10+00            | -                     | 1.03 10+00                         | 9.14 10 <sup>-1</sup> | -                     | -                     | -         | -                     | -         |
| 82   | -                     | 2.76 10 <sup>-2</sup> | -                     | 4.77 10 <sup>-3</sup> | 1.83 10 <sup>-2</sup> | -                     | 1.76 10 <sup>-2</sup>              | 1.50 10-2             | -                     | 8.94 10 <sup>-5</sup> | -         | -                     | -         |
| 84   | -                     | 3.84 10 <sup>-2</sup> | -                     | 2.51 10 <sup>-2</sup> | 7.60 10 <sup>-2</sup> | -                     | 6.54 10 <sup>-2</sup>              | 6.23 10 <sup>-2</sup> | -                     | -                     | -         | -                     | -         |
| 97   | -                     | 2.69 10-3             | -                     | 5.67 10-4             | 4.65 10 <sup>-3</sup> | -                     | 5.08 10-3                          | 5.36 10-3             | -                     | 2.17 10-4             | -         | -                     | -         |
| 117  | 3.93 10 <sup>-3</sup> | 1.20 10-2             | -                     | 1.65 10 <sup>-3</sup> | 2.01 10-2             | -                     | 2.19 10 <sup>-2</sup>              | 2.37 10-2             | -                     | 2.47 10 <sup>-3</sup> | -         | -                     | -         |
| 121  | 4.29 10-4             | 2.75 10-2             | 5.33 10-3             | -                     | 3.55 10-2             | -                     | 7.38 10-2                          | 8.62 10-2             | 1.60 10-2             | 4.33 10-2             | 4.89 10-3 | 4.31 10 <sup>-3</sup> | -         |
| 125  | -                     | 1.09 10-2             | -                     | 4.65 10-2             | 2.15 10-1             | -                     | 1.72 10-1                          | 2.40 10-1             | -                     |                       | -         | -                     | -         |
| 140  | -                     | 1.92 10-4             | -                     | 3.34 10-4             | 2.33 10-3             | -                     | 2.41 10-3                          | 2.34 10-3             | -                     | 6.75 10 <sup>-5</sup> | -         | -                     | -         |
| 141  | 3.38 10-6             | 6.39 10-4             | -                     | -                     | 2.34 10-3             | -                     | 3.34 10-3                          | $1.05\ 10^{-3}$       | 4.01 10-5             | 3.35 10-4             | -         | -                     | -         |
| 144  | 2.96 10-5             | 9.28 10-4             | -                     | 3.65 10-5             | 1.16 10-3             | -                     | 1.68 10-3                          | 1.85 10-3             | 4.48 10-5             | 4.24 10-4             | 1.82 10-5 | -                     | -         |
| 147  | 9.99 10 <sup>-5</sup> | 1.55 10 <sup>-3</sup> | -                     | -                     | 2.50 10 <sup>-3</sup> | -                     | 3.93 10 <sup>-3</sup>              | 6.57 10 <sup>-3</sup> | 1.14 10 <sup>-3</sup> | 6.42 10 <sup>-3</sup> | -         | -                     | 8.02 10-4 |

# Table S7. Biological pump fluxes (*F<sub>Settling</sub>*, ng m<sup>-2</sup>day<sup>-1</sup>)

| ion | PFHxS                 | PFOS                  | PFDS                  | PFBA                  | PFPeA                 | PFHxA                 | PFHpA                              | PFOA                  | PFDA                  | PFUnDA                | PFDoA                 | PFTrA                 | PFTeA     |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------|
|     |                       |                       |                       |                       |                       |                       | <b>F</b> <sub>Settling Fecal</sub> |                       |                       |                       |                       |                       |           |
| 6   | 3.43 10 <sup>-4</sup> | 1.22 10-1             | -                     | -                     | 9.16 10 <sup>-1</sup> | -                     | 1.48                               | 4.79 10 <sup>-1</sup> | -                     | -                     | -                     | -                     | -         |
| 13  | 1.09 10 <sup>-1</sup> | 3.09 10-1             | -                     | -                     | 2.04 10 <sup>-1</sup> | -                     | 2.32 10 <sup>-1</sup>              | 2.68 10-1             | -                     | -                     | -                     | -                     | -         |
| 17  | 2.14 10 <sup>-1</sup> | 8.83                  | 6.06 10 <sup>-3</sup> | 1.77 10               | 3.62 10 <sup>-1</sup> | -                     | 7.61 10 <sup>-1</sup>              | 4.23 10 <sup>-1</sup> | -                     | 2.70 10 <sup>-2</sup> | -                     | -                     | -         |
| 18  | 2.30 10 <sup>-1</sup> | 1.32 10 <sup>1</sup>  | 2.81 10 <sup>-2</sup> | 1.82 10               | 1.08                  | -                     | 9.73 10 <sup>-1</sup>              | 1.14                  | -                     | 1.62 10 <sup>-2</sup> | -                     | -                     | -         |
| 29  | -                     | 2.75 10 <sup>-1</sup> | -                     | -                     | 1.04                  | -                     | 1.34 10                            | 5.15 10 <sup>-1</sup> | -                     | 3.89 10 <sup>-2</sup> | -                     | -                     | -         |
| 31  | -                     | 2.01 10 <sup>-1</sup> | -                     | 2.51 10 <sup>-1</sup> | 7.29 10 <sup>-1</sup> | -                     | 9.22 10 <sup>-1</sup>              | 6.91 10 <sup>-1</sup> | -                     | 2.79 10 <sup>-2</sup> | -                     | -                     | -         |
| 33  | 6.60 10 <sup>-3</sup> | 1.47 10 <sup>-1</sup> | -                     | 5.14 10 <sup>-2</sup> | 2.75 10 <sup>-1</sup> | -                     | 2.63 10 <sup>-1</sup>              | 1.99 10 <sup>-1</sup> | -                     | -                     | -                     | -                     | -         |
| 35  | 1.65 10 <sup>-3</sup> | 1.78 10 <sup>-1</sup> | -                     | 1.58 10 <sup>-1</sup> | 8.36 10 <sup>-1</sup> | -                     | 9.79 10 <sup>-1</sup>              | 5.14 10 <sup>-1</sup> | -                     | 1.84 10 <sup>-2</sup> | -                     | -                     | -         |
| 43  | -                     | 1.13 10 <sup>-1</sup> | -                     | 5.19 10 <sup>-1</sup> | 1.94 10 <sup>-1</sup> | -                     | 2.69 10 <sup>-1</sup>              | 1.08                  | -                     | 3.80 10 <sup>-3</sup> | -                     | -                     | -         |
| 46  | 3.17 10-2             | 2.83 10               | -                     | -                     | 1.47 10 <sup>-1</sup> | -                     | 1.71 10 <sup>-1</sup>              | 1.47 10 <sup>-1</sup> | 1.52 10 <sup>-2</sup> | 6.46 10 <sup>-2</sup> | -                     | -                     | -         |
| 49  | 6.54 10 <sup>-3</sup> | 2.16 10               | -                     | 1.37 10 <sup>-1</sup> | 6.02 10 <sup>-1</sup> | 6.67 10 <sup>-3</sup> | 5.45 10 <sup>-1</sup>              | 5.82 10 <sup>-1</sup> | -                     | 1.27 10 <sup>-1</sup> | -                     | -                     | -         |
| 53  | 4.21 10 <sup>-3</sup> | 1.35 10 <sup>-1</sup> | -                     | -                     | 6.53 10 <sup>-1</sup> | -                     | 1.07                               | 4.56 10 <sup>-1</sup> | -                     | 6.42 10 <sup>-2</sup> | -                     | -                     | -         |
| 55  | -                     | 2.68 10 <sup>-1</sup> | -                     | -                     | 3.58 10 <sup>-1</sup> | -                     | 4.05 10 <sup>-1</sup>              | 2.92 10 <sup>-1</sup> | -                     | 1.05 10 <sup>-3</sup> | -                     | -                     | -         |
| 57  | 5.24 10 <sup>-2</sup> | 1.26 10               | -                     | 2.95 10 <sup>-2</sup> | 1.68 10 <sup>-1</sup> | 1.98 10 <sup>-1</sup> | 2.18 10 <sup>-1</sup>              | 1.98 10 <sup>-1</sup> | 2.37 10 <sup>-3</sup> | 4.41 10 <sup>-2</sup> | -                     | -                     | -         |
| 58  | -                     | 2.91 10 <sup>-1</sup> | -                     | 1.13 10 <sup>-1</sup> | 8.54 10 <sup>-1</sup> | -                     | 7.46 10 <sup>-1</sup>              | 5.09 10 <sup>-1</sup> | -                     | -                     | -                     | -                     | -         |
| 71  | -                     | 8.07 10-2             | -                     | 1.19 10 <sup>-1</sup> | 1.08                  | -                     | 1.81                               | 5.03 10-1             | -                     | -                     | -                     | -                     | -         |
| 74  | -                     | 1.77 10               | -                     | 3.11 10 <sup>-1</sup> | 1.90                  | -                     | 1.52                               | 1.80                  | -                     | -                     | -                     | -                     | -         |
| 77  | 2.40 10 <sup>-1</sup> | 3.47 10               | -                     | 1.86 10               | 4.78                  | -                     | 4.39                               | 3.90                  | -                     | -                     | -                     | -                     | -         |
| 82  | -                     | 8.15 10 <sup>-1</sup> | -                     | 1.41 10 <sup>-1</sup> | 5.41 10 <sup>-1</sup> | -                     | 5.20 10 <sup>-1</sup>              | 4.44 10 <sup>-1</sup> | -                     | 2.64 10 <sup>-3</sup> | -                     | -                     | -         |
| 84  | -                     | 6.76 10 <sup>-1</sup> | -                     | 4.42 10 <sup>-1</sup> | 1.34 10               | -                     | 1.15                               | 1.10                  | -                     | -                     | -                     | -                     | -         |
| 97  | -                     | 1.48 10 <sup>-1</sup> | -                     | 3.11 10-2             | 2.55 10 <sup>-1</sup> | -                     | 2.79 10 <sup>-1</sup>              | 2.94 10 <sup>-1</sup> | -                     | 1.19 10 <sup>-2</sup> | -                     | -                     | -         |
| 117 | 6.24 10 <sup>-2</sup> | 1.90 10 <sup>-1</sup> | -                     | 2.63 10 <sup>-2</sup> | 3.20 10 <sup>-1</sup> | -                     | 3.48 10 <sup>-1</sup>              | 3.77 10 <sup>-1</sup> | -                     | 3.92 10 <sup>-2</sup> | -                     | -                     | -         |
| 121 | 3.85 10 <sup>-3</sup> | 2.46 10 <sup>-1</sup> | 4.77 10 <sup>-2</sup> | -                     | 3.18 10 <sup>-1</sup> | -                     | 6.61 10 <sup>-1</sup>              | 7.72 10 <sup>-1</sup> | 1.43 10 <sup>-1</sup> | 3.88 10 <sup>-1</sup> | 4.38 10 <sup>-2</sup> | 3.86 10 <sup>-2</sup> | -         |
| 125 | -                     | 4.64 10 <sup>-2</sup> | -                     | 1.99 10 <sup>-1</sup> | 9.17 10 <sup>-1</sup> | -                     | 7.35 10 <sup>-1</sup>              | 1.02                  | -                     | -                     | -                     | -                     | -         |
| 140 | -                     | 1.63 10 <sup>-2</sup> | -                     | 2.84 10 <sup>-2</sup> | 1.98 10 <sup>-1</sup> | -                     | 2.05 10 <sup>-1</sup>              | 1.99 10 <sup>-1</sup> | -                     | 5.74 10 <sup>-3</sup> | -                     | -                     | -         |
| 141 | 3.22 10 <sup>-4</sup> | 6.08 10 <sup>-2</sup> | -                     | -                     | 2.23 10 <sup>-1</sup> | -                     | 3.18 10 <sup>-1</sup>              | 1.00 10-1             | 3.82 10 <sup>-3</sup> | 3.19 10 <sup>-2</sup> | -                     | -                     | -         |
| 144 | 1.89 10 <sup>-3</sup> | 5.94 10 <sup>-2</sup> | -                     | 2.34 10 <sup>-3</sup> | 7.45 10 <sup>-2</sup> | -                     | 1.07 10 <sup>-1</sup>              | 1.18 10 <sup>-1</sup> | 2.86 10 <sup>-3</sup> | 2.71 10 <sup>-2</sup> | 1.17 10 <sup>-3</sup> | -                     | -         |
| 147 | 3.79 10 <sup>-3</sup> | 5.87 10 <sup>-2</sup> | -                     | -                     | 9.47 10 <sup>-2</sup> | -                     | 1.49 10 <sup>-1</sup>              | 2.49 10 <sup>-1</sup> | 4.33 10 <sup>-2</sup> | 2.43 10 <sup>-1</sup> | -                     | -                     | 3.04 10-2 |

Those were calculated based on the data published in Casal  $et al.^2$ 

| <i>iso</i> -PFOS                 | 1m -PFOS              | <i>3m</i> -PFOS                  | <i>4m</i> -PFOS                  | <i>5m</i> -PFOS       | <i>iso</i> -PFOA                 | <i>4m</i> -PFOA                  | <i>5m</i> -PFOA                   |
|----------------------------------|-----------------------|----------------------------------|----------------------------------|-----------------------|----------------------------------|----------------------------------|-----------------------------------|
|                                  |                       |                                  | <b>F</b> <sub>Settlin</sub>      | g Phyto               |                                  |                                  |                                   |
| 1.01 10-3                        | -                     | -                                | 2.36 10-4                        | 6.44 10 <sup>-4</sup> | -                                | 2.57 10 <sup>-3</sup>            | 7.85 10 <sup>-3</sup>             |
| 2.53 10 <sup>-3</sup>            | -                     | 4.56 10 <sup>-4</sup>            | 1.15 10 <sup>-3</sup>            | 1.02 10 <sup>-3</sup> | 3.62 10 <sup>-3</sup>            | 3.23 10 <sup>-3</sup>            | -                                 |
| 3.27 10-2                        | 8.98 10 <sup>-3</sup> | 4.45 10 <sup>-3</sup>            | 8.60 10 <sup>-3</sup>            | 1.49 10 <sup>-2</sup> | 6.22 10 <sup>-4</sup>            | 1.83 10 <sup>-3</sup>            | 5.87 10 <sup>-4</sup>             |
| 2.37 10 <sup>-2</sup>            | 5.33 10 <sup>-3</sup> | 2.82 10 <sup>-3</sup>            | 7.96 10 <sup>-3</sup>            | 1.10 10-2             | 1.60 10 <sup>-3</sup>            | 6.78 10 <sup>-3</sup>            | -                                 |
| 2.88 10-4                        | _                     | 3.46 10 <sup>-5</sup>            | 5.44 10 <sup>-5</sup>            | 1.12 10-4             | 2.02 10-4                        | -                                | 8.31 10 <sup>-4</sup>             |
| 8.84 10 <sup>-5</sup>            | -                     | 1.31 10 <sup>-5</sup>            | 2.41 10 <sup>-5</sup>            | 3.13 10-5             | 4.65 10-4                        | 5.07 10 <sup>-4</sup>            | -                                 |
| 3.82 10 <sup>-5</sup>            | -                     | 4.53 10 <sup>-6</sup>            | 8.07 10 <sup>-6</sup>            | 1.18 10 <sup>-5</sup> | 6.32 10 <sup>-5</sup>            | 6.87 10 <sup>-5</sup>            | -                                 |
| 6.13 10 <sup>-5</sup>            | -                     | 6.13 10 <sup>-6</sup>            | 5.86 10 <sup>-6</sup>            | 7.60 10 <sup>-6</sup> | 2.00 10-4                        | 8.59 10 <sup>-5</sup>            | 1.93 10 <sup>-4</sup>             |
| 2.25 10-4                        | -                     | 3.85 10 <sup>-5</sup>            | 8.22 10 <sup>-5</sup>            | 6.33 10 <sup>-5</sup> | 1.29 10 <sup>-3</sup>            | 1.56 10 <sup>-3</sup>            | -                                 |
| 1.64 10 <sup>-2</sup>            | 1.71 10 <sup>-3</sup> | 2.33 10 <sup>-3</sup>            | 5.68 10 <sup>-3</sup>            | 7.23 10 <sup>-3</sup> | 5.39 10 <sup>-4</sup>            | 3.89 10 <sup>-4</sup>            | -                                 |
| 4.10 10 <sup>-3</sup>            |                       | 7.35 10 <sup>-4</sup>            | 1.54 10 <sup>-3</sup>            | 1.55 10 <sup>-3</sup> | 1.37 10 <sup>-3</sup>            | 6.06 10 <sup>-4</sup>            | 3.33 10 <sup>-4</sup>             |
| 2.73 10-4                        | -                     | 4.68 10-5                        | 4.69 10 <sup>-5</sup>            | 8.35 10 <sup>-5</sup> | 8.86 10-4                        | 3.03 10 <sup>-4</sup>            | 5.88 10 <sup>-4</sup>             |
| 2.48 10 <sup>-4</sup>            | -                     | 3.59 10-5                        | 7.50 10-5                        | 9.89 10 <sup>-5</sup> | 2.97 10 <sup>-4</sup>            | 2.16 10 <sup>-4</sup>            | -                                 |
| 1 51 10 <sup>-3</sup>            | 3 04 10 <sup>-4</sup> | 3 20 10 <sup>-4</sup>            | 7 48 10 <sup>-4</sup>            | 8 45 10 <sup>-4</sup> | 1 71 10 <sup>-4</sup>            | 2 04 10 <sup>-4</sup>            | -                                 |
| 2 44 10 <sup>-4</sup>            | -                     | 3 16 10 <sup>-5</sup>            | 7 87 10 <sup>-5</sup>            | 1 01 10 <sup>-4</sup> | 3 88 10 <sup>-4</sup>            | 3 64 10 <sup>-4</sup>            | -                                 |
| 6 57 10 <sup>-4</sup>            | _                     | 3 29 10-4                        | 6 59 10 <sup>-5</sup>            | 8 55 10 <sup>-5</sup> | -                                | 8 24 10 <sup>-4</sup>            | _                                 |
| 1 72 10 <sup>-2</sup>            | _                     | 2 96 10 <sup>-3</sup>            | 8 32 10 <sup>-3</sup>            | 9 53 10 <sup>-3</sup> | 1 81 10 <sup>-2</sup>            | 5 71 10 <sup>-3</sup>            | 2 71 10 <sup>-3</sup>             |
| 7 24 10 <sup>-2</sup>            | 5 63 10 <sup>-3</sup> | 1 19 10 <sup>-2</sup>            | 3 04 10 <sup>-2</sup>            | 3 90 10 <sup>-2</sup> | 6.03 10 <sup>-2</sup>            | 1 58 10 <sup>-2</sup>            | 2.7 1 10<br>2 87 10 <sup>-4</sup> |
| 1 98 10 <sup>-3</sup>            | 4 86 10 <sup>-4</sup> | 2 82 10 <sup>-4</sup>            | 6 53 10 <sup>-4</sup>            | 8 17 10 <sup>-4</sup> | 1 13 10 <sup>-3</sup>            | 2 05 10 <sup>-3</sup>            | 2.07 10                           |
| 2 81 10 <sup>-3</sup>            | 4.00 10               | 2.02 10<br>1 51 10 <sup>-4</sup> | 9 00 10 <sup>-4</sup>            | 1 57 10 <sup>-3</sup> | 1.13 10<br>1 37 10 <sup>-3</sup> | 7.09.10 <sup>-3</sup>            | _                                 |
| 2.81 10<br>1 47 10 <sup>-4</sup> | _                     | 4.31 10<br>2 21 10 <sup>-5</sup> | 6 22 10 <sup>-5</sup>            | 2 17 10 <sup>-5</sup> | 4.37 10<br>2 25 10 <sup>-4</sup> | 7.05 10<br>2.04 10 <sup>-3</sup> | _                                 |
| 1.47 10<br>1 00 10 <sup>-3</sup> | _                     | 2.31 10<br>8 72 10 <sup>-5</sup> | 0.22 10<br>2 10 10 <sup>-4</sup> | 2 26 10 <sup>-4</sup> | 3.33 10<br>1 85 10 <sup>-3</sup> | 5 81 10 <sup>-3</sup>            |                                   |
| $1.09\ 10^{-3}$                  | -                     | 2 20 10-4                        | 2.10 10<br>1 09 10-3             | 2.30 10<br>1 45 10-3  | 1.85 10 <sup>-3</sup>            | $3.01 \ 10^{-3}$                 | -<br>1 25 10-3                    |
| 5 72 10 <sup>-4</sup>            | 5.85 10               | 5.28 10                          | 1.08 10                          | 2 62 10 <sup>-5</sup> | 1 95 10-2                        | 6 05 10 <sup>-3</sup>            | $1.55 \ 10^{-3}$                  |
| J.75 IU<br>7 15 10-6             | -                     | -                                | -                                | 8.05 10               | 1.85 10                          | 0.93 10 <sup>-4</sup>            | 2.00 10                           |
| 7.13 10 <sup>-5</sup>            | -                     | -<br>2 20 10-6                   | -                                | -                     | 2.22 10                          | 2 00 10-5                        | -                                 |
| $3.02 \ 10^{-5}$                 | -                     | 2.30 10 <sup>-6</sup>            | -                                | -<br>1 75 10-5        | -                                | 3.90 10 <sup>-4</sup>            | 1.42 10                           |
| 5.15 10 -                        | -                     | 0.29 10 <sup>-5</sup>            | 2.24 10 -                        | 1.75 10 -             | $1.44 \ 10^{-4}$                 | 4.05 10 <sup>-3</sup>            | -                                 |
| -                                | -                     | 2.05 10 5                        |                                  | -                     | 7.32 10                          | 2.25 10 °                        | -                                 |
|                                  |                       |                                  | <b>F</b> <sub>Settlir</sub>      | ng Fecal              |                                  |                                  |                                   |
| 8.42 10-3                        | -                     | -                                | 1.96 10-5                        | 5.35 10-3             | -                                | 6.52 10-2                        | 2.13 10-2                         |
| 1.44 10-2                        | -                     | 2.59 10-3                        | 6.52 10-3                        | 5.77 10-3             | 2.06 10-2                        | -                                | 1.83 10-2                         |
| 8.78 10-1                        | 2.41 10-1             | 1.19 10-1                        | 2.31 10-1                        | 4.00 10-1             | 1.67 10-2                        | 1.58 10-2                        | 4.91 10-2                         |
| 1.10 10+00                       | 2.49 10-1             | 1.32 10-1                        | 3.72 10 <sup>-1</sup>            | 5.12 10 <sup>-1</sup> | 7.48 10-2                        | -                                | 3.17 10 <sup>-1</sup>             |
| 2.09 10 <sup>-2</sup>            | -                     | 2.52 10-3                        | 3.96 10 <sup>-3</sup>            | 8.17 10 <sup>-3</sup> | 1.47 10-2                        | 6.05 10 <sup>-2</sup>            | -                                 |
| 1.03 10-2                        | -                     | 1.53 10-3                        | 2.82 10-3                        | 3.66 10-3             | 5.42 10 <sup>-2</sup>            | -                                | 5.91 10 <sup>-2</sup>             |
| 8.90 10 <sup>-3</sup>            | -                     | 1.06 10 <sup>-3</sup>            | 1.88 10 <sup>-3</sup>            | 2.74 10 <sup>-3</sup> | 1.47 10 <sup>-2</sup>            | -                                | 1.60 10-2                         |
| 1.34 10-2                        | -                     | 1.34 10 <sup>-3</sup>            | 1.28 10 <sup>-3</sup>            | 1.66 10-3             | 4.35 10-2                        | 4.21 10 <sup>-2</sup>            | 1.87 10-2                         |
| 8.87 10 <sup>-3</sup>            | -                     | 1.52 10 <sup>-3</sup>            | 3.24 10 <sup>-3</sup>            | 2.50 10 <sup>-3</sup> | 5.09 10 <sup>-2</sup>            | -                                | 6.17 10 <sup>-2</sup>             |
| 2.00 10-1                        | 2.08 10-2             | 2.84 10 <sup>-2</sup>            | 6.91 10 <sup>-2</sup>            | 8.81 10 <sup>-2</sup> | 6.56 10 <sup>-3</sup>            | -                                | 4.74 10 <sup>-3</sup>             |
| 1.64 10 <sup>-1</sup>            | -                     | 2.94 10 <sup>-2</sup>            | 6.14 10 <sup>-2</sup>            | 6.20 10 <sup>-2</sup> | 5.49 10 <sup>-2</sup>            | 1.33 10 <sup>-2</sup>            | 2.42 10 <sup>-2</sup>             |
| 9.75 10 <sup>-3</sup>            | -                     | 1.67 10 <sup>-3</sup>            | 1.68 10 <sup>-3</sup>            | 2.98 10 <sup>-3</sup> | 3.17 10 <sup>-2</sup>            | 2.10 10-2                        | 1.08 10 <sup>-2</sup>             |
| 2.25 10 <sup>-2</sup>            | -                     | 3.25 10 <sup>-3</sup>            | 6.79 10 <sup>-3</sup>            | 8.96 10 <sup>-3</sup> | 2.69 10 <sup>-2</sup>            | -                                | 1.95 10 <sup>-2</sup>             |
| 1.41 10 <sup>-1</sup>            | 2.85 10 <sup>-2</sup> | 3.00 10-2                        | 7.01 10 <sup>-2</sup>            | 7.92 10 <sup>-2</sup> | 1.61 10-2                        | -                                | 1.91 10 <sup>-2</sup>             |
| 2.27 10 <sup>-2</sup>            | -                     | 2.93 10 <sup>-3</sup>            | 7.31 10 <sup>-3</sup>            | 9.39 10 <sup>-3</sup> | 3.61 10-2                        | -                                | 3.38 10 <sup>-2</sup>             |
| 9.60 10 <sup>-3</sup>            | -                     | 4.82 10 <sup>-3</sup>            | 9.64 10 <sup>-4</sup>            | 1.25 10 <sup>-3</sup> | -                                | -                                | 1.21 10 <sup>-2</sup>             |
| 1.15 10-1                        | -                     | 1.99 10 <sup>-2</sup>            | 5.59 10 <sup>-2</sup>            | 6.40 10 <sup>-2</sup> | 1.22 10 <sup>-1</sup>            | 1.82 10 <sup>-2</sup>            | 3.83 10 <sup>-2</sup>             |
| 3.09 10 <sup>-1</sup>            | 2.41 10 <sup>-2</sup> | 5.09 10 <sup>-2</sup>            | 1.30 10 <sup>-1</sup>            | 1.66 10 <sup>-1</sup> | 2.58 10 <sup>-1</sup>            | 1.22 10 <sup>-3</sup>            | 6.75 10 <sup>-2</sup>             |
| E 9E 10-2                        | 1 11 10-2             | 8 35 10 <sup>-3</sup>            | 1 Q3 10-2                        | 2 / 2 10-2            | 3 33 10-2                        | _                                | 6 07 10 <sup>-2</sup>             |

| Table S8. | Biological | pump fluxe | s for PFOS | and PFOA | branched | isomers | (F <sub>Settling</sub> , | ng m <sup>-2</sup> | day <sup>-1</sup> | •) |
|-----------|------------|------------|------------|----------|----------|---------|--------------------------|--------------------|-------------------|----|
|           |            |            |            |          |          |         |                          |                    |                   |    |

| no  | <i>iso</i> -PFOS      | 1m -PFOS              | 3m -PFOS              | 4m -PFOS              | 5m -PFOS              | iso-PFOA              | 4m -PFOA              | <i>5m</i> -PFOA       |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 84  | 4.94 10 <sup>-2</sup> | -                     | 7.93 10 <sup>-3</sup> | 1.58 10 <sup>-2</sup> | 2.75 10 <sup>-2</sup> | 7.68 10-2             | -                     | 1.25 10 <sup>-1</sup> |
| 97  | 8.06 10 <sup>-3</sup> | -                     | 1.27 10 <sup>-3</sup> | 3.41 10 <sup>-3</sup> | 4.46 10 <sup>-3</sup> | 1.84 10-2             | -                     | 1.12 10 <sup>-1</sup> |
| 117 | 1.74 10 <sup>-2</sup> | -                     | 1.31 10 <sup>-3</sup> | 3.34 10 <sup>-3</sup> | 3.75 10 <sup>-3</sup> | 2.93 10 <sup>-2</sup> | -                     | 9.23 10 <sup>-2</sup> |
| 121 | 2.08 10 <sup>-2</sup> | 3.43 10 <sup>-3</sup> | 2.94 10 <sup>-3</sup> | 9.67 10 <sup>-3</sup> | 1.30 10 <sup>-2</sup> | 6.34 10 <sup>-2</sup> | 1.21 10 <sup>-2</sup> | 6.29 10 <sup>-2</sup> |
| 125 | 2.45 10 <sup>-3</sup> | -                     | -                     | -                     | 3.69 10 <sup>-4</sup> | 7.89 10 <sup>-2</sup> | 1.13 10 <sup>-2</sup> | 2.97 10 <sup>-2</sup> |
| 140 | 6.08 10 <sup>-4</sup> | -                     | -                     | -                     | -                     | 1.88 10 <sup>-2</sup> | -                     | 1.32 10 <sup>-2</sup> |
| 141 | 2.88 10 <sup>-3</sup> | -                     | 2.19 10 <sup>-4</sup> | -                     | -                     | -                     | 1.35 10 <sup>-2</sup> | 3.71 10 <sup>-3</sup> |
| 144 | 2.00 10 <sup>-3</sup> | -                     | 4.03 10-4             | 1.43 10 <sup>-3</sup> | 1.12 10 <sup>-3</sup> | 9.20 10 <sup>-3</sup> | -                     | 2.97 10 <sup>-2</sup> |
| 147 | -                     | -                     | 7.77 10 <sup>-4</sup> | -                     | -                     | 2.78 10-2             | -                     | 8.54 10 <sup>-2</sup> |

Those values were calculated based on the data published in Casal  $et al.^2$ 

Figure S7. Biological pump ranges (A) phytoplankton and B) zooplankton related fluxes) and PFAS  $K_{ow}$ 



PFAS K<sub>ow</sub> are taken from Wang et al.<sup>9</sup>

Figure S8. Relation between DCM water phase concentrations and F<sub>Settling</sub> for PFOA



\*Non-parametric significant correlation (Spearman's Rho) is found for PFOA  $F_{settling}$  and DCM seawater concentration, p<0.05.

Table S9. Annual mean export of PFAS due to turbulent fluxes ( $F_{Eddy}$ ) and biological pump fluxes ( $F_{settling}$ ) and calculated residence times (years)

|          | Mean F <sub>Eddy</sub> | Mean F <sub>settling</sub>         | Average<br>residence time<br>accounting F <sub>Eddy</sub> | Average<br>residence time<br>accounting F <sub>Eddy</sub><br>and F <sub>Settling</sub> |
|----------|------------------------|------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|
| Compound | (ng m                  | <sup>-2</sup> year <sup>-1</sup> ) | (ye                                                       | ars)                                                                                   |
| PFHxS    | 0.066                  | 24                                 | 890000                                                    | 1300                                                                                   |
| PFOS     | 0.36                   | 520                                | 940000                                                    | 360                                                                                    |
| PFHxA    | 0.057                  | 38                                 | 650000                                                    | 200                                                                                    |
| PFHpA    | 0.039                  | 320                                | 640000                                                    | 22                                                                                     |
| PFOA     | 0.050                  | 260                                | 710000                                                    | 32                                                                                     |
| PFDA     | 0.22                   | 14                                 | 580000                                                    | 5000                                                                                   |

Inventory is calculated on an average concentration between surface and DCM concentrations over the first 100 m of the surface ocean. For  $F_{Eddy}$  fluxes at DCM depth are considered as representative for the selected column depth.

#### REFERENCES

- 1 B. González-Gaya, J. Dachs, J. L. Roscales, G. Caballero and B. Jiménez, Perfluoroalkylated Substances in the Global Tropical and Subtropical Surface Oceans, *Environ. Sci. Technol.*, 2014, **48**, 13076–13084.
- 2 P. Casal, B. González-Gaya, Y. Zhang, A. J. F. Reardon, J. W. Martin, B. Jiménez and J. Dachs, Accumulation of Perfluoroalkylated Substances in Oceanic Plankton, *Environ. Sci. Technol.*, 2017, **51**, 2766–2775.
- 3 N. Yamashita, S. Taniyasu, G. Petrick, S. Wei, T. Gamo, P. K. S. Lam and K. Kannan, Perfluorinated acids as novel chemical tracers of global circulation of ocean waters, *Chemosphere*, 2008, **70**, 1247–1255.
- 4 J. P. Benskin, D. C. G. Muir, B. F. Scott, C. Spencer, A. O. De Silva, H. Kylin, J. W. Martin, A. Morris, R. Lohmann, G. Tomy, B. Rosenberg, S. Taniyasu and N. Yamashita, Perfluoroalkyl Acids in the Atlantic and Canadian Arctic Oceans, *Environ. Sci. Technol.*, 2012, **46**, 5815–5823.
- 5 L. W. Y. Yeung, C. Dassuncao, S. Mabury, E. M. Sunderland, X. Zhang and R. Lohmann, Vertical Profiles, Sources, and Transport of PFAS in the Arctic Ocean, *Environ. Sci. Technol.*, 2017, **51**, 6735–6744.
- 6 M. Brumovský, P. Karásková, M. Borghini and L. Nizzetto, Per- and polyfluoroalkyl substances in the Western Mediterranean Sea waters, *Chemosphere*, 2016, **159**, 308–316.
- 7 N. Yamashita, K. Kannan, S. Taniyasu, Y. Horii, G. Petrick and T. Gamo, A global survey of perfluorinated acids in oceans, *Marine Pollution Bulletin*, 2005, **51**, 658–668.
- 8 D. A. Siegel, K. O. Buesseler, S. C. Doney, S. F. Sailley, M. J. Behrenfeld and P. W. Boyd, Global assessment of ocean carbon export by combining satellite observations and food-web models, *Global Biogeochemical Cycles*, 2014, **28**, 181–196.
- 9Z. Wang, M. MacLeod, I. T. Cousins, M. Scheringer and K. Hungerbühler, Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFAS), *Environ. Chem.*, 2011, **8**, 389.