Biochar particle aggregation in soil pore water: influence of ionic

strength and interactions with pyrene

Supporting Information

Stephanie Castan^a, Gabriel Sigmund^{a,b,c}, Thorsten Hüffer^a, Thilo Hofmann^{a*}

^{*a*} Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstraße 14, 1090 Wien; ^{*}thilo.hofmann@univie.ac.at; Tel: +43-1-4277-53320

^b Agroscope, Environmental Analytics, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland

^c Ithaka Institute for Carbon Strategies, Ancienne Eglise 9, Arbaz 1974, Switzerland

	Pyrene	
CAS – No.	129-00-0	
Molar mass [Da]	202.26	
Log K _{OW}	4.88	
Solubility [µg/L]	135	
Molar volume [cm ³ /mol]	159.3	

Table S1: Selected pyrene properties.^{1,2}

Sorption isotherms were fitted with the Polanyi-Manes model (Equation 1), which is applicable for isotherm fits over large concentration ranges.^{2,3}

Equation 1

C _s	mass of sorbate adsorbed per unit mass
	of sorbent
C_{aq}	sorbate concentration in aqueous phase
Q^{max}	sorption capacity
a, d	fitting parameters
R	universal gas constant
T	absolute temperature
V _S	molar volume of solute
S_W	water solubility
	$\begin{array}{c} C_{s}\\ Q^{max}\\ a, d\\ R\\ T\\ V_{s}\\ S_{W}\end{array}$

For comparison among different isotherms, individual sorption coefficients (K_d, L/kg) were calculated at aqueous concentrations of 0.1, 1 and 10 μ g/L. Standard deviations were calculated from duplicate measurements and unpaired t-tests were performed to test whether compared values are statistically different on a p < 0.05 level.

Figure S1: Sorption isotherms after 28 days in MQ (\bullet) and 0.01 M CaCl₂ (\blacksquare).

Figure S2: Sorption isotherms in 0.01 M CaCl₂ after 24 hours (•) and 28 days (•).

- 1. Chemspider database, Pyrene, *Royal Society of Chemistry* Available at: www.chemspider.com. (Accessed: 27th March 2019)
- 2. Yang, K., Zhu, L. & Xing, B., Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials, *Environ. Sci. Technol.*, 2006, **40**, 1855–1861
- 3. Kah, M., Zhang, X., Jonker, M. T. O. & Hofmann, T., Measuring and modeling adsorption of PAHs to carbon nanotubes over a six order of magnitude wide concentration range, *Environ. Sci. Technol.*, 2011, **45**, 6011–6017