¹ Supplementary Information

2

³ Prospects for finding Junge variability-lifetime ⁴ relationships for micropollutants in the Danube ⁵ river.

6

7 Claudia Coll*[†], Michael D. Sohn[‡], Claudia Lindim[†], Anna Sobek[†], Matthew MacLeod*[†]

8 [†]Department of Environmental Sciences and Analytical Chemistry (ACES), Stockholm University, 10691
9 Stockholm, Sweden

10 [‡] Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS70-108B, Berkeley, California 94720,

11 United States

12 **Corresponding authors*

13 Contents

14	Monitoring stations in the Danube river as used for STREAM-EU2
15	Properties of the monitored micropollutants that were used in the empirical Junge relationship2
16 17	Method used to fit measured concentrations of JDS3-CW to log-normal distributions and to estimate the measurements below LOQ
18	Evaluation of sorption of cationic compounds to soil and sediment (K_d calculation)
19	STREAM-EU concentration predictions for the JDS3 monitoring campaign7
20	Junge relationships from STREAM-EU synthetic data
21	Relative standard deviation and half-lives of micropollutants9
22 23	Concentrations of micropollutants in the JDS3 vs predicted concentrations for hypothetical chemicals in STREAM-EU
24	REFERENCES
25	

27 Monitoring stations in the Danube river as used for STREAM-EU

29

30 Figure S1. Map used in Lindim, et. al.¹ displaying the 68 sampling points along the Danube river that were

31 modeled in STREAM-EU^{1,2}. The daily concentrations of 4 hypothetical micropollutants were modeled in

- 32 these stations for the year 2013 and used to calculate spatial and temporal Junge variability-lifetime
- 33 relationships.

34

35 Properties of the monitored micropollutants that were used in the empirical Junge

- 36 relationship
- 37

38 Table S1. Micropollutants monitored by Croatian Waters in the third Joint Danube Survey (JDS3-CW)

39 and their relevant properties.

Compound	CAS	Chemical group and function	Structure [‡]	log <i>D</i> _{OW} *	Main ionic form at <i>pH</i> 6.5-8.5*	$\log K_{\rm AW}$ +
Amitriptyline	50-48- 6	Pharmaceutical: Antidepressant	CH3 CH3 CH3	2.48	Cationic	-5.55
Caffeine	58-08- 2	Stimulant		-0.55	Neutral	-8.83

26

Carbamazepine	298- 46-4	Pharmaceutical: Anti-epileptic	H ₂ N	2.77	Neutral	-8.35
Codeine	76-57- 3	Pharmaceutical: Analgesic/ opioid	Horizon Horizon	-0.45	Cationic	-11.51
Hydrocodone	125- 29-1	Pharmaceutical: Analgesic	H ₃ C	0.73	Cationic	-9.58
Lidocaine	137- 58-6	Pharmaceutical: Anesthetic	CH ₀ CH ₃ CH ₃	2.33	Cationic	-8.27
Nicotine	54-11- 5	Stimulant	H ₃ C	-0.04	Cationic	-6.91
Tramadol	27203 -92-5	Pharmaceutical: Analgesic/ opioid	H ₃ C, CH ₃ OH, CH ₃ CH ₃	0.62	Cationic	-9.20
Venlafaxine	93413 -69-5	Pharmaceutical: Antidepressant	HO CH ₃ CH ₃	1.22	Cationic	-9.08

40 Note: [‡] obtained from ChemSpider. ^{*} Obtained from ChemAxon Chemicalize web-based software

41 (<u>www.chemicalize.com</u>). Distribution coefficient (log D_{OW}) was obtained at pH 7.4, main ionic form was

42 deduced from the software-estimated strongest acidic or basic pKa^+ Calculated from Henry's Law

43 constant at 25°C obtained from EPI Suite V4.11³

44

45 Method used to fit measured concentrations of JDS3-CW to log-normal

46 distributions and to estimate the measurements below LOQ.

47

48 The empirical relative standard deviation (σ/μ) for spatial variability was calculated for the nine

49 micropollutants measured in the JDS3 (Table S1). To avoid bias in the estimation of means and standard

50 deviations calculated only from measurements above LOQ, we imputed values below LOQ by fitting the

51 concentration measurements to log-normal distributions and extrapolating values in the lower tail (as

52 recommended for censored data ^{4, 5}) and not from the parameters of the fitted log-normal distribution.

53 Concentrations in (ng/L) obtained for compounds measured in the JDS3-CW were first log-transformed and

54 then inverse-ranked from highest to smallest, meaning that if N concentrations were below LOQ, then the

55 highest concentration corresponding to rank 68 and the lowest to 68-N. An empirical cumulative probability

Y = rank / 68

56 (Y) was calculated for each log-concentration with Equation S1.

Eq. S1.

57

58 A modeled cumulative probability (*Y*) according to a normal distribution was calculated with initial 59 estimated values for the mean (μ) and standard deviation of *Y*().

Based on a method described in Reference 3, the squared error between each *Y* and *Y*' was calculated and summed. Using the "Solver" tool in Excel, the first estimates of $\mu_{\text{fit-lognorm}}$ and $\sigma_{\text{fit-lognorm}}$ were changed in order to minimize the sum of squared errors.⁶

63 The *N* concentrations below LOQ were then calculated using the optimized $\mu_{\text{fit-lognorm}}$ and $\sigma_{\text{fit-lognorm}}$ and 64 combined with the original concentration measurements for the subsequent calculation of σ / μ intended for 65 the calibration of the empirical Junge relationship. The $\mu_{\text{fit-lognorm}}$ and $\sigma_{\text{fit-lognorm}}$ were not back-transformed 66 and used directly for the calculation of σ / μ , because this is known to cause bias in the estimation of central-67 tendency and dispersion parameters of small skewed samples.^{4, 5}

68 Figure S2 shows the graphical visualization of the fitting.

69

70

71 Figure S2. Cumulative distribution function for the log-normal concentrations measured in the JDS3-CW (in blue),

72 the fitted normal distribution (in orange) and the imputed concentrations below LOQ (in yellow).

74 A single arithmetic mean, standard deviation and subsequently the relative standard deviation σ/μ , were

75 calculated for each micropollutant using the concentrations measurements above the LOQ (in blue)

76 combined with the imputed data below the LOQ (in yellow) (as recommended for censored data ^{4, 5}) and

77 not from the parameters of the fitted log-normal distribution (in orange).

78 Compounds where all concentrations were close to LOQ (i.e. sulfamethoxazole) were excluded for this

- 79 part of analysis due to the low resolution and measurement error.
- 80

Evaluation of sorption of cationic compounds to soil and sediment (K_d calculation).

83 Seven of the compounds used in the empirical Junge relationship (shown in Tables S1 and S6) occur mainly 84 as cationic species in freshwater. Sorption of cationic pharmaceuticals to soil and sediment is higher 85 compared to neutral pharmaceuticals with similar K_{ow}, and thus sorption might be underestimated by a 86 criteria based only on D_{OW}. Therefore sediment-water partition coefficients (K_d) were calculated according to Droge 7 to assess degree of sorption to sediment and dissolved matter from the distribution coefficient 87 88 D_{ow}. The estimated K_d of the seven cationic compounds is lower than the K_d calculated with the sorption criteria we used (i.e., log D_{OW} < 4, see SI), so therefore we decided these chemicals meet our criteria and 89 can be included in this study. 90

91

92 The distribution coefficient (K_d) was calculated using two approaches:

93 94 95 96	 Using a refined sorption mo (Eq. S2Eq. S2⁷) and K_{CEC} (Eq. S3) 	odel for organic cations to soil and clay (Eq. S4), by calculating D_{OC} log $D_{OC} = 1.53Vx + 0.32NA_i - 0.27$) from the micropollutant molecule volume V_X and surface area NA_i ⁷
97	Eq. S2 ⁷	$\log D_{OC} = 1.53Vx + 0.32NA_i - 0.27$
98	Eq. S3 ⁷	$log K_{CEC, clay} = 1.22Vx + 0.22NA_i + 1.09$
99	Eq. S4 ⁷	$K_d = K_{CEC,clay} \cdot (CEC_{soil} - 3.4f_{OC}) + f_{OC} \cdot D_{OC}$
100 101 102 103	2) Using a calculated from a true using this D_{OC} for calculated	raditional linear regression between D_{OC} and D_{OW} (Eq. S5) ⁸ , and then on of K_d as in Equation S4.
104	Eq. S5 ⁸	$Doc = 10^{0.31 \log Dow + 2.78}$
105 106	The average and maximum concent CW were taken into account for the	trations of dissolved organic carbon (DOC) measurements from JDS3- e calculations of K_d and since the exact composition of the DOC in the

107 Danube river is unknown, the properties of standard Eurosoils ES-1 and ES-5⁷ were used.

109 Table S2. Average and maximum dissolved organic matter (DOM) parameters obtained from the JDS3-CW data.9

	DOM	
average	2.98	mg/L
maximum	5.50	mg/L

111 Table S3. Standard Eurosoil 1 and 5 (ES-1 and ES-5) characteristics used on the K_d calculations according to Reference 6. ES-1 is the standard soil

112 with highest content of clay and lowest f_{OC} , and ES5 the one with highest f_{OC} and lowet clay content.⁷

Soil type	f _{oc}		CEC _{soil}		CEC _{clay}	
ES-1	0.013	kg oc / kg solid dw	0.299	mmol/kg	0.2548	mol/kg
ES-5	0.0925	kg oc / kg solid dw	0.327	mmol/kg	0.0125	mol/kg

113

114 Table S4. Calculation of K_d for two different types of soil (ES-1 and ES-5) and average or maximum dissolved organic matter (DOM) measured in

115 the Danube during the JDS3. The K_d of the compounds in the empirical Junge relationship do not exceed the K_d of the theoretical D_{OW} limit chosen.

					ES-1, ave	erage DOM	ES-5, ave	erage DOM	ES-1, maxi	mum DOM	ES-5, maxi	mum DOM
Compound	$\log D_{\rm OW}$	$\log D_{\rm OC}$	$\log D_{\rm OC}$	log K _{CEC}	$\log K_{\rm d}$	log K _d	$\log K_{\rm d}$	log K _d	log K _d	log K _d	$\log K_{\rm d}$	$\log K_{\rm d}$
		(Eq S5)	(Eq S2)	(Eq S3)	(Eq S5+S4)	(Eq S2+S4)	(Eq S5+S4)	(Eq S2+S4)	(Eq S5+S4)	(Eq S2+S4)	(Eq S5+S4)	(Eq S2+S4)
Amitriptyline	2.48	3.55	3.82	4.88	-1.23	-1.23	-2.42	-2.33	-0.97	-0.96	-2.16	-2.07
Caffeine	-0.55	2.61	1.45	3.46	-2.64	-2.66	-3.66	-3.94	-2.37	-2.39	-3.39	-3.67
Carbamazepine	2.77	3.64	2.50	4.30	-1.79	-1.82	-2.71	-3.08	-1.52	-1.55	-2.45	-2.82
Codeine	-0.45	2.64	3.63	4.72	-1.40	-1.39	-2.68	-2.50	-1.13	-1.12	-2.42	-2.24
Hydrocodone	0.73	3.01	3.63	4.72	-1.40	-1.39	-2.65	-2.50	-1.13	-1.12	-2.38	-2.24
Lidocaine	2.33	3.50	3.20	4.38	-1.72	-1.73	-2.75	-2.87	-1.45	-1.46	-2.48	-2.61
Nicotine	-0.04	2.77	2.15	3.54	-2.55	-2.57	-3.54	-3.77	-2.29	-2.30	-3.27	-3.51
Tramadol	0.62	2.97	3.77	4.84	-1.28	-1.27	-2.55	-2.38	-1.02	-1.00	-2.29	-2.11
Venlafaxine	1.22	3.16	3.68	4.77	-1.35	-1.34	-2.59	-2.45	-1.08	-1.07	-2.32	-2.19
Theoretical sorption limit	4	4.02	3.82	4.88	-1.22	-1.23	-2.24	-2.33	-0.95	-0.96	-1.98	-2.07

STREAM-EU concentration predictions for the JDS3 monitoring campaign 119

121 Figure S3. Normalized concentrations predicted for the corresponding date and station sampled during the

- third Joint Danube Survey (JDS3). The normalization was relative to the concentration of the compound in the first station (S1)
- 124 The normalized modeled concentrations (C/C_{station 1}) have more variation for compounds with shorter half-
- 125 life (i.e. C07 with $\tau = 7$ days), than for longer half-lives (i.e. C360 with $\tau = 360$ days). Variation is similar
- 126 for the three most persistent hypothetical compounds with half-lives of 90, 180 and 360 days.

128 Figure S4. Junge relationship of STREAM-EU concentrations predicted for dates and location of

129 measurements performed in the Joint Danube Survey (JDS3). Only the four compounds with shortest half-

130 lives (7, 15, 30 and 90 days) were used to derive this relationship.

131

132 Junge relationships from STREAM-EU synthetic data

133

134 Table S5. Summary of Junge relationships for four hypothetical chemicals with concentrations modeled by

135 STREAM-EU. The parameter a represents the intercept, and b the slope of the Junge relationships. The

136 temporal relationships were calculated for 67 monitoring stations along the Danube river, the spatial

137 relationships were calculated daily for the year 2013.

	Temporal relationships Mean (5 th ,95 th percentiles)	Spatial relationship Mean (5 th , 95 th percentiles)			
Total number	67	365			
a	1.33 (0.62, 2.98)	1.32 (0.99, 1.89)			
b -0.327 (-0.651, -0.088)		-0.154 (-0.212, -0.103)			
p-value (slope)	0.027 (0.002, 0.085)	0.079 (0.024 , 0.181)			
R ²	0.95 (0.84, 0.99)	0.85 (0.67, 0.95)			

138 Note: the 5th and 95th percentiles are shown instead of a confidence interval.

139

140 Relative standard deviation and half-lives of micropollutants

141

Table S6. Relative Standard Deviations (σ/μ) and half-lives (τ) of micropollutants used to generate an empirical spatial Junge relationship. σ/μ were calculated from concentrations measured in the JDS3-CW, imputing measurements below limits of quantification (LOQ). In cases where there were two or more halflives reported in the literature τ is the geometric mean, and the 95% confidence factor (Cf) is reported as

146 described in reference ¹⁰.

Micropollutant	Empirical σ/μ in the Danube river	Literature τ (days)	Cf in $ au$	References for $ au$
amitriptyline	0.8034	5.0	NA	11
caffeine	1.3448	5.7	3.39	11-19
carbamazepine	0.5461	181.8	2.37	12, 14-20
codeine	0.7877	34.6	1.03	12, 21
hydrocodone	0.7811	18.5	NA	12
lidocaine	1.0447	100.6	NA	22
nicotine	0.7773	3.2	NA	12
tramadol	1.0067	81.4	1.84	22, 23
venlafaxine	0.8945	44.7	3.43	22, 24

147

148 Several studies have experimental designs with replicates at different conditions (i.e. comparing different

149 study sites¹²) and report more than one half-life for each compound. If this was the case, then the compiled

150 half-lives were first averaged per compound and per study as the geometric mean. Second, all studies for

151 each compound were pooled in order to compute a broad geometric mean for each micropollutant, this

152 geometric mean is reported in the "literature τ ".

153 Concentrations of micropollutants in the JDS3 vs predicted concentrations for154 hypothetical chemicals in STREAM-EU

Amitriptyline (5 days)

155

Figure S5. Normalized concentrations measured for amitriptyline in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation

half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the
JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the
experimental half-life is shown in brackets.

Caffeine (5.7 days)

Figure S6. Normalized concentrations measured for caffeine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the experimental half-life is shown in brackets.

Carbamazepine (182 days)

169

Figure S7. Normalized concentrations measured for carbamazepine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the

174 experimental half-life is shown in brackets.

Codeine (35 days)

Figure S8. Normalized concentrations measured for codeine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the experimental half-life is shown in brackets.

Figure S9. Normalized concentrations measured for hydrocodone in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the experimental half-life is shown in brackets.

Lidocaine (101 days)

Figure S10. Normalized concentrations measured for lidocaine in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the

194 JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the

195 experimental half-life is shown in brackets.

Nicotine (3.2 days)

197 Figure S11. Normalized concentrations measured for nicotine in the JDS3 campaign compared to the 198 predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation 199 half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the 200 JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the 201 experimental half-life is shown in brackets.

Tramadol (81 days)

Figure S12. Normalized concentrations measured for tramadol in the JDS3 campaign compared to the predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the experimental half-life is shown in brackets.

209

Venlafaxine (45 days)

210

211 Figure S13. Normalized concentrations measured for venlafaxine in the JDS3 campaign compared to the

212 predicted normalized concentrations in STREAM-EU of the six hypothetical chemicals with biodegradation

- 213 half-lives of 7, 15, 30, 90, 180 and 360 days and for the corresponding date and station sampled during the
- 214 JDS3. The normalization was relative to the average concentration of the compound. In the plot's title, the
- 215 experimental half-life is shown in brackets.

217 REFERENCES

- C. Lindim, I. T. Cousins and J. vanGils, Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model, *Environmental Pollution*, 2015, **207**, 97-106.
- 221 2. C. Lindim, J. van Gils and I. T. Cousins, A large-scale model for simulating the fate & transport
 222 of organic contaminants in river basins, *Chemosphere*, 2016, **144**, 803-810.
- US-EPA., Estimation programs interface (EPI) Suite, EPA's Office of Pollution Prevention Toxics
 and Syracuse Research Corporation (SRC), 2012.
- 4. N. Shoari and J. S. Dube, Toward improved analysis of concentration data: Embracing nondetects,
 Environmental Toxicology and Chemistry, 2018, **37**, 643-656.
- D. R. Helsel, *Statistics for censored environmental data using Minitab and R*, John Wiley & Sons,
 Inc., 2nd edn., 2012.
- E. G. John, Simplified Curve Fitting using Spreadsheet Add-ins, *International Journal of Engineering and Education*, 1998, 14, 375-380.
- Z31 7. S. T. Droge and K. U. Goss, Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals, *Environmental Science & Technology*, 2013, 47, 14233-14241.
- A. Franco, J. Struijs, T. Gouin and O. R. Price, Evolution of the sewage treatment plant model
 SimpleTreat: applicability domain and data requirements, *Integrated Environmental Assessment and Management*, 2013, 9, 560-568.
- 237 9. ICPDR, International Commission for the Protection of the Danube River: Danube River Basin
 238 Water Quality Database, <u>https://danubis.icpdr.org/user?destination=home</u>, (accessed 25/11/2015).
- M. MacLeod, A. J. Fraser and D. Mackay, Evaluating and expressing the propagation of
 uncertainty in chemical fate and bioaccumulation models, *Environmental Toxicology and Chemistry*, 2002, 21, 700-709.
- Y. Aminot, L. Fuster, P. Pardon, K. Le Menach and H. Budzinski, Suspended solids moderate the
 degradation and sorption of waste water-derived pharmaceuticals in estuarine waters, *Science of The Total Environment*, 2018, **612**, 39-48.
- M. J. Benotti and B. J. Brownawell, Microbial degradation of pharmaceuticals in estuarine and coastal seawater, *Environmental Pollution*, 2009, **157**, 994-1002.
- S. M. Blunt, J. D. Sackett, M. R. Rosen, M. J. Benotti, R. A. Trenholm, B. J. Vanderford, B. P.
 Hedlund and D. P. Moser, Association between degradation of pharmaceuticals and endocrinedisrupting compounds and microbial communities along a treated wastewater effluent gradient in
 Lake Mead, *Science of The Total Environment*, 2018, 622-623, 1640-1648.
- I. L. Conkle, J. Gan and M. A. Anderson, Degradation and sorption of commonly detected PPCPs
 in wetland sediments under aerobic and anaerobic conditions, *Journal of Soils and Sediments*,
 2012, 12, 1164-1173.
- J. C. Durán-Álvarez, B. Prado, D. González, Y. Sánchez and B. Jiménez-Cisneros, Environmental
 fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater
 irrigated soil Results of laboratory scale experiments, *Science of The Total Environment*, 2015, **538**, 350-362.
- M. W. Lam, C. J. Young, R. A. Brain, D. J. Johnson, M. A. Hanson, C. J. Wilson, S. M. Richards,
 K. R. Solomon and S. A. Mabury, Aquatic persistence of eight pharmaceuticals in a microcosm
 study, *Environmental Toxicology and Chemistry*, 2004, 23, 1431-1440.
- 261 17. D. Löffler, J. Römbke, M. Meller and T. A. Ternes, Environmental fate of pharmaceuticals in water/sediment systems, *Environmental Science & Technology*, 2005, **39**, 5209-5218.
- 263 18. C. Tixier, H. P. Singer, S. Oellers and S. R. Müller, Occurrence and fate of carbamazepine,
- 264 clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters, *Environmental* 265 *Science & Technology*, 2003, **37**, 1061-1068.

- H. Yamamoto, Y. Nakamura, S. Moriguchi, Y. Nakamura, Y. Honda, I. Tamura, Y. Hirata, A.
 Hayashi and J. Sekizawa, Persistence and partitioning of eight selected pharmaceuticals in the
 aquatic environment: laboratory photolysis, biodegradation, and sorption experiments, *Water Research*, 2009, 43, 351-362.
- 270 20. H. Zou, M. Radke, A. Kierkegaard, M. MacLeod and M. S. McLachlan, Using chemical
 271 benchmarking to determine the persistence of chemicals in a Swedish lake, *Environmental Science*272 & *Technology*, 2015, 49, 1646-1653.
- 273 21. A. Y.-C. Lin, Y.-C. Lin and W.-N. Lee, Prevalence and sunlight photolysis of controlled and 274 chemotherapeutic drugs in aqueous environments, *Environmental Pollution*, 2014, **187**, 170-181.
- P. C. Rua-Gomez and W. Puttmann, Degradation of lidocaine, tramadol, venlafaxine and the
 metabolites O-desmethyltramadol and O-desmethylvenlafaxine in surface waters, *Chemosphere*,
 2013, **90**, 1952-1959.
- Z. Li, A. Sobek and M. Radke, Flume experiments to investigate the environmental fate of
 pharmaceuticals and their transformation products in streams, *Environmental Science & Technology*, 2015, 49, 6009-6017.
- 281 24. M. Rožman, V. Acuña and M. Petrović, Effects of chronic pollution and water flow intermittency
 282 on stream biofilms biodegradation capacity, *Environmental Pollution*, 2018, 233, 1131-1137.