Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Partition coefficients of four perfluoroalkyl acid alternatives between bovine serum albumin (BSA) and water in comparison to ten classical perfluoroalkyl acids

Flora Allendorf^{1,*}, Urs Berger², Kai-Uwe Goss^{1,3}, and Nadin Ulrich¹

¹ Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany

² Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany

³ Institute of Chemistry, University of Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany

* Corresponding author

Phone: +49 341 235 1818; e-mail: flora.allendorf@ufz.de

Content

SI-1. Experimental Section
SI-1.1 Suppliers of individual PFAAs for dialysis experiments2
SI-1.2 Dialysis cells2
SI-1.2.1 Preparation of buffer2
SI-1.2.2 Experimental setup3
SI-1.3 Instrumental analysis4
SI-2. Results
SI-2.1 The importance of monitoring fraction bound5
SI-2.2 Precision experiments
SI-2.3 Dialysis experiments7
SI-2.4 Batch A79068
SI-2.5 Comparison with literature (Bischel et al. 2011)12
SI-2.6 Conformer of PFHxA and PFOA in cross section13
SI-2.7 Influence of fatty acid binding14
References

SI-1. Experimental Section

Analyte		Company	Purity
Perfluorobutanoic acid	PFBA	Sigma Aldrich	99%
Perfluorohexanoic acid	PFHxA	Fluka	>97%
Perfluoroheptanoic acid	РҒНрА	Sigma Aldrich	99%
Perfluorooctanoic acid	PFOA	ABCR	>97%
Perfluorononanoic acid	PFNA	Sigma Aldrich	97%
Perfluorodecanoic acid	PFDA	Fluka	>97%
Perfluoroundecanoic acid	PFUnDA	Sigma Aldrich	95%
Perfluorobutane sulfonic acid	PFBS, TBA salt	Fluka	>98%
Perfluorohexane sulfonic acid	PFHxS, K-salt	Fluka	98%
Perfluorooctane sulfonic acid	PFOS, K-salt	Fluka	98%

SI-1.1 Suppliers of individual PFAAs for dialysis experiments

SI-1.2 Dialysis cells

SI-1.2.1 Preparation of buffer

For dialysis equilibrium experiments, Hank's balanced salt solution (HBSS) was used as a buffer and was supplied as a powder from Sigma Aldrich (Steinheim). The pH was adjusted to 7.4 after adding sodium carbonate (Sigma Aldrich; 0.35 g/L), TRIS (Roth, Karlsruhe; 1.21 g/L) and NaN₃ (Merck, Darmstadt; 0.3 g/L), the latter was used to prevent microbial activity. This buffer system was selected for consistency with former dialysis studies and exhibits the electrolyte concentration in blood.¹ The concentration of NaN₃ showed no effect on the experiments.^{1, 2}

SI-1.2.2 Experimental setup

BSA-molecule

Per-/polyfluorinated analyte

Figure SI-1.2.3. Schematic setup of a dialysis cell experiment. Three measurement cells and three reference cells were prepared for the determination of the partition coefficient for each compound. Initially, the stock solution of compound was added in the right chamber of both cells. In the measurement cell BSA-solution was added in one chamber, while in the reference cell no protein was added. To all cells of the setup, the same analyte concentration was added. Samples were taken from the initial concentration and, in equilibrium, from the BSA-free chambers. PFAAs/alternatives tend to sorb to a different degree to the glass surface of the cell leading to varying amounts of freely dissolved mass. Therefore, we used two approaches to determine total analyte mass ($m_{i,tot}$) within the system. For compounds where less than or equal to 10% of the $m_{i,tot}$ sorbed to the surface, reference cells were used. For compounds that sorb substantially (>10%) to the surfaces of the dialysis cells, reference cells could not be taken as the appropriate reference for the mass balance due to the variability of glass surfaces of the handmade cells (see main text). For those compounds an extraction step was added. The scheme was adapted from a version published in the supplementary information in Henneberger et al.³

SI-1.3 Instrumental analysis

Table SI-1.3.1.	LC-Ramp for	PFAA/alternatives	analysis w	ith Eluent	A: 2 mM	NH_4Ac in	Milli-Q v	water	and
Eluent B: 2 mN	I NH₄Ac, 10 %	acetonitrile and 2.	5 % Milli-Q	water in n	nethanol.	Column wa	s a ACQ	υίτη υ	PLC
BEH Shield C18	(130 Å, 1.7 μ	m, 2.1 mm x 50 mm) supplied	by Waters.					

Time min	Flow mL/min	% A	% B
Initial	0.4	90	10
0.5	0.4	90	10
5	0.4	0.1	99.9
7.3	0.4	0.1	99.9
7.31	0.4	90	10
9	0.4	90	10

Table SI-1.3.2. MS parameters for PFAAs and alternatives measured with LC-MS/MS from Waters. Retention time (rt), collision energy (CE)

Analyte	rt (min)	Cone (V)	CE (V)	MRM transitions	Internal Standard IS	Cone (V)	CE (V)	IS MRM transitions	Qualifier transitions
PFBA	1.35	2	12	213 > 169	¹³ C ₄ PFBA	2	12	217 > 172	
PFHxA	4.01	2	12	313 > 269	¹³ C ₂ PFHxA	2	12	315 > 270	
PFHpA	4.43	2	12	363 > 319	¹³ C ₂ PFHxA	2	12	315 > 270	
PFOA	4.73	2	12	413 > 369	¹³ C ₄ PFOA	2	12	417 > 372	
PFNA	4.99	2	12	463 > 419	$^{13}C_5PFNA$	2	12	468 > 423	
PFDA	5.2	2	12	513 > 469	¹³ C ₂ PFDA	2	12	515 > 470	
PFUnDA	5.4	2	12	563 > 519	¹³ C ₂ PFUnDA	2	12	565 > 520	
PFBS	3.65	30	30	299 > 80	$^{13}C_2PFHxA$	2	12	315 > 270	299 > 99
PFHxS	4.57	30	32	399 > 80	¹⁸ O ₂ PFHxS	30	32	403 > 103	399 > 99
PFOS	5.05	30	38	499 > 80	¹³ C ₄ PFOS	30	38	503 > 99	499 > 99
DONA	5.63	4	14	377 > 251	¹³ C ₃ HFPO-DA	8	20	287 > 185	377 > 85
HFPO-DA	5.27	8	20	285 > 185	¹³ C ₃ HFPO-DA	8	20	287 > 185	285 > 169
9CI-PF3ONS	5.49	8	26	531 > 350	¹³ C ₈ PFOS	30	38	507 > 99	531 > 83
PFECHS	5.08	54	32	461 > 381	¹³ C ₈ PFOA	4	10	421 > 376	461 > 99

SI-2. Results

SI-2.1 The importance of monitoring fraction bound

Figure SI-2.1. The relation between measuring error and fraction bound on the determination of the partition coefficient. To ensure the accuracy of the determined of the partition coefficient the fraction which is bound to the albumin should be between 20 - 80%. Below or above that, small measuring errors could have significant effects on the concluded partition coefficient, since in this range partition coefficients alter drastically.

SI-2.2 Precision experiments

Table SI-2.2. Week-to-week precision test for the determination of albumin/water partition coefficients. Three experiments were conducted with PFNA and both batches of BSA. Sampling was done after 72 h and 96 h of triplicates. Mean and standard deviation was calculated for albumin/water partition coefficients both sampling points (three x triplicates).

PFNA	log K _{albumin/water} [L/kg]						
	BSA Batch A3803	BSA Batch A7906	BSA Batch A3803	BSA Batch A7906			
1st experiment	Sampli	ng 72 h	Sampli	ng 96 h			
Vial1	4.39	4.50	4.25	4.49			
Vial2	4.38	4.37	4.26	4.51			
Vial3	4.38	4.52	4.28	4.49			
2nd experiment							
Vial1	4.52	4.64	4.52	4.68			
Vial2	4.54	4.64	4.54	4.69			
Vial3	4.54	4.59	4.54	4.71			
3rd experiment							
Vial1	4.46	4.53	4.46	4.57			
Vial2	4.45	4.58	4.45	4.48			
Vial3	4.49	4.40	4.49	4.52			
Mean	4.46	4.53	4.42	4.57			
SD	0.07	0.10	0.12	0.10			

SI-2.3 Dialysis experiments

Table SI-2.3. Concentrations × of dialysis experiments in reference cells (c_{ref}) and freely dissolved in measurement cells (c_{free}) at equilibrium (*) analysed by LC-MS/MS. Values represent the mean and standard deviation (SD) of six measurements. Concentration of BSA solution c_{BSA} (batch A3803) used for dialysis experiments and amount of analyte/amount of BSA at equilibrium (v).

Analyte	c _{ref} * [ng/mL]	SD	c _{free} * [ng/mL]	SD	c _{BSA} [g/L]	v [mol/mol]
PFCAs						
PFBA	5.77	(0.30)	3.82	(0.25)	3×10^{0}	4×10^{-4}
PFHxA	5.72	(0.11)	2.39	(0.12)	1×10^{0}	1.4 × 10 ⁻³
PFHpA	6.09	(0.50)	3.82	(0.32)	1 × 10 ⁻¹	7.4 × 10 ⁻³
PFOA	10.56	(0.27)	5.86	(0.27)	1 × 10 ⁻¹	1.5 × 10 ⁻²
PFNA	6.45	(0.38)	4.09	(0.21)	5 × 10 ⁻²	1.2 × 10 ⁻²
PFDA ^a	5.33	(0.02)	2.27	(1.25)	5 × 10 ⁻²	1.6 × 10 ⁻²
PFUnDA ^{a,b}	2.92	(1.30)	1.80	(0.60)	2.5 × 10 ⁻²	1.2 × 10 ⁻²
HFPO-DA	8.13	(0.55)	2.91	(0.11)	3×10^{0}	6.7 × 10 ⁻⁴
DONA	7.06	(0.34)	5.15	(0.17)	1 × 10 ⁻¹	6.5 × 10 ⁻³
PFSAs						
PFBS	10.50	(0.74)	5.86	(0.80)	1×10^{0}	2.1 × 10 ⁻³
PFHxS	9.50	(0.45)	3.61	(0.15)	5 × 10 ⁻²	3.8×10^{-2}
PFOS ^a	6.31	(0.33)	3.98	(0.30)	2.5 × 10 ⁻²	2.5 × 10 ⁻²
9CI-PF3ONS ^a	4.76	(0.17)	2.09	(0.06)	2.5 × 10 ⁻²	2.7 × 10 ⁻²
PFECHS	8.37	(0.51)	2.85	(0.11)	1 × 10 ⁻¹	1.5 × 10 ⁻³

^aextraction step included due to glass sorption of the analyte, ^bonly mean of five measurements taken

SI-2.4 Batch A7906

We determined albumin/water partition coefficients with another batch of BSA (A7906, Sigma). Both, A7906 and A3803, were lyophilized powders gained by heat shock fraction. According to the manufacturer, the extraction of A7906 was done without the additional removal of fatty acids, whereas A3803 has undergone a charcoal treatment to remove essentially all fatty acids.

We found some differences in the albumin/water partition coefficients measured with the different BSA batches (Table and Figure SI-2.4.1-2.4.4, below). Especially short-chain PFAAs and PFHxS showed a lower sorption strength of at least 0.3 log units when we used A7906 compared to the batch A3803 (main study). If these differences were caused either by potentially present fatty acids that were not removed in A7906 or by conformational changes evolved by the extraction and purification steps could not be examined. The exact fatty acid composition and their concentrations are not specified and quantification of fatty acids in the two batches was not possible due to the very low content of individual fatty acids. In conclusion we assume that different batches of BSA could affect the determined partition coefficients. The trend of increasing partition coefficients with increasing chain length of the PFCAs, however, was for both batches consistent. Variable extraction and purification steps could probably affect the conformation of the native serum albumin.⁴ Overall, one has to consider that a determination of partition coefficients with serum albumin of exactly the same conformation cannot be achieved, since every withdrawal from the natural environment could influence the protein.

We decided to use essentially fatty acid free albumin to determine the partition coefficients of the PFAS to avoid potential interferences by impurities.

Table SI-2.4.1. Logarithmic albumin/water partition coefficients (log $K_{albumin/water}$ [L water/kg albumin]) determined for ten PFAAs and four alternative compounds with BSA batch A7906. Mean and standard deviation SD were taken from six measurements. HFPO-DA and DONA are not fully fluorinated, therefore no number is assigned. Fraction bound $f_{i,bound} = m_{i,bound}/m_{i,tot}$. K_a is the association constant ([PL]/([P] × [L])) with protein P and ligand L and is displayed to facilitate comparison with literature values.

Number of perfluorinated carbons	Analyte	log K _{albumin/water} [L/kg]	SD	<i>К</i> а [М ⁻¹]	SD	f _{bound}	SD	Recovery (incl. Extracts)
PFCAs								
3	PFBA	1.90	(0.07)	5.4 × 10 ³	(9.4 ×10 ²)	29%	(4%)	104%
5	PFHxA	3.02	(0.07)	7.0×10^{4}	(1.1 ×104)	35%	(4%)	95%
6	PFHpA	3.79	(0.05)	4.1×10^{5}	(4.6 ×104)	62%	(3%)	98%
7	PFOA	4.17	(0.05)	1.0×10^{6}	(1.2 ×10 ⁵)	43%	(3%)	94%
8	PFNA	4.48	(0.05)	2.1×10^{6}	(2.4 ×10 ⁵)	45%	(3%)	101%
9	PFDA ^a	4.84	(0.05)	4.7×10^{6}	(5.6 ×10 ⁵)	63%	(3%)	84% (119%)
10	PFUnDA ^{a,b}	4.72	(0.1)	3.6×10^{6}	(9.1 ×10 ⁵)	44%	(6%)	59% (149%)
	HFPO-DA	2.71	(0.04)	3.4 × 10 ⁴	(3.4 ×10 ³)	44%	(2%)	92%
	DONA	3.80	(0.04)	4.2 × 10 ⁵	(4.2 ×10 ⁴)	61%	(2%)	91%
PFSAs								
4	PFBS	2.65	(0.12)	3.1×10^{4}	(7.5 ×10 ³)	32%	(6%)	106%
6	PFHxS	4.49	(0.13)	2.2×10^{6}	(7.1 ×10 ⁵)	44%	(7%)	96%
8	PFOS	4.83	(0.11)	4.7×10^{6}	(1.2 ×10 ⁶)	77%	(4%)	92%
8	9Cl-PF3ONS ^a	5.02	(0.03)	7.2 × 10 ⁶	(5.2 ×10 ⁵)	58%	(2%)	81% (110%)
8	PFECHS	4.30	(0.03)	1.3×10^{6}	(8.6 ×104)	50%	(2%)	≈ 90%

^aextraction step included due to glass sorption of the analyte, ^bonly mean of four measurements taken

Analyte	c _{ref} * [ng/mL]	SD	c _{free} * [ng/mL]	SD	c _{BSA} [g/L]	v [mol/mol]
PFCAs						
PFBA	8.42	(0.42)	6.00	(0.29)	1×10^{1}	1.5 × 10 ⁻⁴
PFHxA	8.49	(0.54)	5.54	(0.30)	1×10^{0}	1.2×10^{-3}
PFHpA	7.16	(0.35)	2.74	(0.19)	5 × 10 ⁻¹	3.1×10^{-3}
PFOA	12.10	(0.70)	6.93	(0.38)	1 × 10 ⁻¹	1.6×10^{-2}
PFNA	6.11	(0.36)	3.34	(0.17)	1 × 10 ⁻¹	1.5×10^{-2}
PFDAª	4.11	(0.26)	1.51	(0.12)	5 × 10 ⁻²	1.4×10^{-2}
PFUnDA ^{a,b}	2.99	(0.44)	1.67	(0.26)	2.5 × 10 ⁻²	1.0×10^{-2}
HFPO-DA	9.30	(0.44)	5.24	(0.23)	3×10^{0}	5.4×10^{-4}
DONA	9.70	(1.02)	3.79	(0.20)	5 × 10 ⁻¹	4.2×10^{-3}
PFSAs						
PFBS	8.42	(0.42)	6.00	(0.29)	2×10^{0}	7.0 × 10 ⁻⁴
PFHxS	9.20	(0.49)	5.18	(0.75)	5 × 10 ⁻²	2.7 × 10 ⁻²
PFOS	5.71	(0.41)	1.32	(0.24)	1 × 10 ⁻¹	1.2×10^{-2}
9CI-PF3ONS ^a	4.59	(0.10)	1.94	(0.11)	2.5 × 10 ⁻²	2.5 × 10 ⁻²
PFECHS	6.69	(1.09)	3.33	(0.11)	1 × 10 ⁻¹	9.6 × 10⁻⁴

Table SI-2.4.2. Concentrations of dialysis experiments with BSA batch A7906 in reference cells (c_{ref}) and freely dissolved in measurement cells (c_{free}) at equilibrium (*) analysed by LC-MS/MS. Values represent the mean and standard deviation (SD) of six measurements. Concentration of BSA solution c_{BSA} (batch A7906) used for dialysis experiments and amount of PFAA/amount of BSA at equilibrium (v).

^aextraction step included due to glass sorption of the analyte, ^bonly mean of four measurements taken

Figure SI-2.4.3. Comparison of albumin/water partition coefficients for the series of PFCAs/carboxylate alternatives determined with different batches of BSA (A3803 and A7906). When A7906 was used, lower

partition coefficients could be noted for shorter-chain carboxylates. Error bars of standard deviations are partly covered by symbols of data points.

Figure SI-2.4.4. Comparison of albumin/water partition coefficients for the series of PFSAs/sulfonate alternatives determined with different batches of BSA (A3803 and A7906). When A7906 was used, lower partition coefficients could be noted for shorter-chain sulfonates, except for PFECHS. Error bars of standard deviations are partly covered by symbols of data points.

SI-2.5 Comparison with literature (Bischel et al. 2011)

Figure SI-2.5.1. Comparison of albumin/water partition coefficients for the series of PFCAs determined by Bischel et al. (2011)⁵ and in our study. Bischel measured additionally perfluoropentanoic acid (PFPeA with 5 perfluorinated carbons) and perfluorododecanoic acid (PFDoDA with 12 perfluorinated carbons) but not PFBA. They described partition coefficients with an increasing and a decreasing trend with increasing chainlength with a peak at PFHpA, whereas we see an increasing trend with increasing chain-length. Error bars of standard deviations are partly covered by symbols of data points.

Figure SI-2.5.2. Comparison of partition coefficients for the series of PFSAs determined by Bischel et al. (2011)⁵ and in our study. As seen for PFCAs, Bischel noted a similar trend with the highest partition coefficient for PFHxS. Regarding our results, we discuss that the trend is not clear, since PFOS sorbed stronger to the glass and increased therefore the experimental uncertainty.

SI-2.6 Conformer of PFHxA and PFOA in cross section

Figure SI-2.6. Conformers of PFHxA (five perfluorinated carbons) on the left and PFOA (seven perfluorinated carbons) on the right, calculated by COSMOconf/TURBOMOLE in cross-section.^{6, 7} Literature discussed a conformeric change from a rather zig-zag form to a more helical structure occurring when the number of perfluorinated carbons exceeds six. This difference is not discernable here.

SI-2.7 Influence of fatty acid binding

Table SI-2.7. Logarithmic albumin/water partition coefficients for PFHxA or PFNA determined in presence of fatty acids (tridecanoic acid, TDA or heptadecanoic acid, HDA) at different molar ratios ([fatty acid] : [albumin]). Mean and standard deviations are taken by the displayed six measurements.

TDA Dialysis Experiments

HDA	Dialysis	Experiments
-----	----------	-------------

[TDA] :						
[albumin]	2.5	1.2	0.3			
	log K _{albumin/water} for PFNA					
72h Vial1	4.34	4.54	4.63			
72h Vial2	4.32	4.52	4.67			
72h Vial3	4.40	4.50	4.58			
96h Vial1	4.28	4.52	4.60			
96h Vial2	4.32	4.55	4.61			
96h Vial3	4.37	4.57	4.58			
Mean	4.34	4.53	4.61			
SD	0.04	0.02	0.03			

[TDA] :			
[albumin]	2.3	1.1	0.6
	log K _{album}	_{iin/water} for	PFHxA
72h Vial1	2.88	3.10	3.17
72h Vial2	2.87	3.04	3.19
72h Vial3	2.91	3.14	3.19
96h Vial1	2.82	3.16	3.16
96h Vial2	2.94	3.08	3.25
96h Vial3	2.95	3.07	3.13
Mean	2.89	3.10	3.18
SD	0.05	0.05	0.04

[TDA] :			
[albumin]	2.3	1.1	0
	log Kalbumin/water for PFHxA		
72h Vial1	3.15	3.19	3.35
72h Vial2	3.06	3.25	3.34
72h Vial3	3.00	3.13	3.41
96h Vial1	3.03	3.13	3.31
96h Vial2	3.00	3.31	3.30
96h Vial3	2.89	3.13	3.39
Mean	3.02	3.19	3.35
SD	0.09	0.08	0.04

[HDA] :				
[albumin]	2.4	1.2	0.2	
	log K _{albun}	log K _{albumin/water} for PFNA		
72h Vial1	4.59	4.53	4.49	
72h Vial2	4.55	4.58	4.56	
72h Vial3	4.53	4.52	4.51	
96h Vial1	4.56	4.59	4.51	
96h Vial2	4.54	4.66	4.59	
96h Vial3	4.54	4.65	4.55	
Mean	4.55	4.59	4.54	
SD	0.02	0.06	0.04	

[HDA] : [albumin]	2 5	1 5	0.5
	2.5	1.5	0.5
	log K _{albumin/water} for PFHxA		
72h Vial1	3.26	3.27	3.31
72h Vial2	3.24	3.16	3.26
72h Vial3	3.25	3.23	3.24
96h Vial1	3.23	3.32	3.32
96h Vial2	3.25	3.16	3.23
96h Vial3	3.26	3.23	3.22
Mean	3.25	3.23	3.26
SD	0.01	0.06	0.04

References

- 1. L. Henneberger, K. U. Goss and S. Endo, Equilibrium Sorption of Structurally Diverse Organic Ions to Bovine Serum Albumin, *Environ. Sci. Technol.*, 2016, **50**, 5119-5126.
- 2. S. Endo and K. U. Goss, Serum albumin binding of structurally diverse neutral organic compounds: data and models, *Chem. Res. Toxicol.*, 2011, **24**, 2293-2301.
- 3. L. Henneberger, K. U. Goss and S. Endo, Partitioning of Organic Ions to Muscle Protein: Experimental Data, Modeling, and Implications for in Vivo Distribution of Organic Ions, *Environ. Sci. Technol.*, 2016, **50**, 7029-7036.
- 4. A. C. Sen, K. Matsuyama, S. Wanwimolruk and J. H. Perrin, Observations of conformational changes in human serum albumin followine removal of fatty acid by charcoal, *J. Pharm. Biomed. Anal.*, 1991, **9**, 781-784.
- 5. H. N. Bischel, L. A. Macmanus-Spencer, C. Zhang and R. G. Luthy, Strong associations of shortchain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms, *Environ. Toxicol. Chem.*, 2011, **30**, 2423-2430.
- 6. COSMOconf (V 4.1), COSMOlogic GmbH & Co KG, <u>http://www.cosmologic.de</u>.
- 7. TURBOMOLE 4.2.1 (2016), a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.