Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Effect of irrigation water type and other environmental parameters on CeO₂ nanopesticide- clay colloid interactions

Ekta Tiwari^a, Mithu Mondal^a, Nisha Singh^a, Nitin Khandelwal^a, Fazel Abdolahpur Monikh^c, Gopala Krishna Darbha^{a,b,*}

^aEnvironmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal, India- 741246

^bCentre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India, 741246

^cInstitute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, Netherlands

*Corresponding author: Gopala Krishna Darbha, Email- <u>gkdarbha@gmail.com</u>, <u>gkdarbha80@yahoo.com</u> Tel: (+91)- 9849626082

Table-1 Synthetic Fresh water and hard water composition

Major ion concentration	Synthetic fresh water	Synthetic hard water
Na ⁺ (µmol/L)	250	670
Ca ²⁺ (µmol/L)	263	1230
$Mg^{2+}(\mu mol/L)$	60	410
K^+ (μ mol/L)	25	110
Cl ⁻ (µmol/L)	280	680
NO ₃ - (µmol/L)	30	100
$SO_4^{2-}(\mu mol/L)$	115	600
$H_2PO_4^-(\mu mol/L)$	-	30
HCO ₃ - (µmol/L)	386	2000
рН	7.4	8.2
DOM (mg/L)	1	1
Total IS	$0.9 \times 10^{-3} M$	$4 \times 10^{-3} M$

Table-2 Water composition and in-situ parameters of Hoogly river water, West Bengal, India

River water
22.9316 [°] N
88.4092° E
8.3
7.4
258
427
1.85
573.9
63.95
226.3
464.1
694.9
216.5
38.7
1229.3
$2.2 \times 10^{-3} M$

Attachement efficiency calculation

Aggregation kinetics of CeO₂ NPs was obtained from the initial rate of change of hydrodynamic daimeter with time, measured by time resolved DLS measurments. Attachement efficiency (α), was used to quantify the aggregation kinetics of CeO₂ NPs that can be measured by normalizing the aggregation rate constant in the reaction limited regime (K_{slow}) to the rate constant in diffusion limited regime (K_{fast}) and Critical Coaugulation Concentration (CCC) is the value of salt concentration at which aggregation is maximum, where α approaches to 1⁻¹. Stability ratio (W) for CeO₂ NPs is measured as inverse of attachement effeciency and given as:

Stability ratio (W) =
$$\frac{1}{\alpha} = \frac{K_{fast}}{K_{slow}}$$

S.No.	Water type	Measured zeta potential (in mV)
1.	DI	-29.9 ± 3.18
2.	Synthetic Fresh water	-20.5 ± 5.5
3.	Synthetic Hard water	-3.9 ± 3.1
4.	River water	-0.8 ± 1.1

Table-3 Zeta potential of suspension mixture in environmental water samples at 25°C

Reference:

1. Raza, G.; Amjad, M.; Kaur, I.; Wen, D., Stability and Aggregation Kinetics of Titania Nanomaterials under Environmentally Realistic Conditions. *Environmental Science & Technology* **2016**, *50* (16), 8462-8472.