Supplementary Information 1 2 3 No Evidence for Brown Carbon Formation in Ambient Particles Undergoing Atmospherically 4 **Relevant Drying** 5 Vikram Pratap¹, Michael A. Battaglia Jr.¹, Annmarie G. Carlton², Christopher J. Hennigan^{1*} 6 ¹Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County 7 ²Department of Chemistry, University of California, Irvine 8 9 Corresponding Author: *Phone: (410) 455-3515; fax: (410) 455-6500; e-mail: hennigan@umbc.edu 10 11 12 13 14 Contents of this file 15 Text S1 to S3 16 Figures S1 to S6 17 Table S1

19 Figure S1: Control experiment plots, where the dry channel was empty (no silica gel). (a) WSOC_p data

for dry and ambient channel plotted against time. (b) $WSOC_{p,dry}$ (dry channel WSOC) is compared with WSOC_p (ambient channel WSOC). The slope of the straight line fitted to the data is 1.00, indicating no

21 w sloc_p (another channel w sloc). The slope of the straight line if 22 bias between the channels.

23

24 Text S1 Calibration details of TOC analyzer and LWCC

25 The TOC analyzer is calibrated in factory service or if our verification step fails. Before each sampling

26 campaign, the TOC analyzer is tested for verification. In the verification process before the starting of the

27 campaign, we prepared sucrose solutions of known concentrations within a concentration range that

28 includes our measurement range. Those sucrose solutions were then measured for TOC using the TOC

29 analyzer. The sucrose solutions had a theoretical TOC (expected TOC) which was compared with the

30 measured TOC. Figure S2(a) shows the verification curve for the TOC analyzer. The data exhibits a linear

31 response with a slope of 0.97, intercept of 0.042, and $R^2 = 0.999$. This verification confirms that the

32 factory calibration remained valid throughout the ambient measurements.

33 The LWCC was also factory calibrated and tested for performance. We performed verification of the

34 LWCC using different diluted solutions of coffee, with absorbance values covering the range of our

35 measurements. Filtered coffee solutions of different concentration were prepared, and the absorbance was

36 measured through the LWCC in the same configuration as was used for the WSOC measurements. Figure

37 S2(b) shows the verification plot. The data are highly linear, with $R^2 = 1$.

39 Figure S2: Verification curves of the TOC analyzer and LWCC

40

41 Text S2 Gly and MeGly EXPERIMENTS

42 A series of aerosol drying experiments were conducted with atomized solutions of glyoxal (Gly) and

43 methylglyoxal (MeGly) in 20 mM (NH_4)₂SO₄. The experiments were performed using a similar setup as

44 the one used in the ambient sampling. The schematic of the experimental setup is shown in Figure S3.

45 Gly and MeGly were obtained from Sigma-Aldrich as 40% w/w aqueous solutions. ACS grade

46 (NH₄)₂SO₄ was acquired from Fisher Scientific. All of the chemicals were used as they were received

47 without further processing. Compressed air was generated using an oil-free compressor, and the air was

48 cleaned using activated carbon (GE Healthcare, carbon cap 150) and a HEPA filter. The particles were

49 generated in an atomizer (TSI model 9302) and passed through a trap to remove larger particles. The

50 aerosol stream was then merged with the make-up air to achieve flow balance. In low humidity

51 experiments, the make-up air flow was increased to achieve a target RH after the dryer. The TOC and

52 LWCC analysis of the collected aerosol are the same as described in Section II of the manuscript.

55 Figure S3: Schematic of the experimental setup for the glyoxal and methylglyoxal laboratory

56 experiments.

57 All the experiments were conducted with mixed solutions consisting of 10 mM organic (Gly or MeGly)

- 58 and 20 mM (NH₄)₂SO₄ concentrations. Table S1 shows the list of the experiments and associated details.
- 59 Note the loss of WSOC_p due to the evaporation of organics in the dry channel was observed for all
- 60 experiments (WSOC_{p,dry} \leq WSOC_p). The MeGly loss to evaporation was significantly higher than that

61 for Gly, which is consistent with previous studies ¹. Also, the MeGly absorbance was generally larger

62 than the Gly absorbance, indicating a higher potential of MeGly in BrC formation ². Comparison of the

63 absolute Abs₃₆₈ between the bypass and dried channels is not applicable here since significant organic

64 mass was lost when the atomized particles were dried. Therefore, we compare instead the organic mass-

- 65 normalized Abs_{368} between the two channels to evaluate the effect of particle drying on BrC formation. 66 The last column of table S1 shows the dry to bypass ratio of the mass-normalized Abs_{368} , and is plotted in
- 67 figure S8. Figure S8 shows the enhancement in absorbance when the RH of the experiments was reduced
- 68 from 50% for both Gly and MeGly. For comparison, the RH of the bypass channel was 86%. It can be
- 69 seen that the dry to bypass MAC (mass absorption coefficient) ratio for Gly remained ~1.0 at 50% RH,
- 70 but was enhanced by ~25% when the RH was reduced to 33%. For MeGly, there was an enhancement of
- 71 50% at 50% RH, and the enhancement further increased to 70% at an RH of 25%. These results suggest

72 the enhancement of BrC with the reduction in RH, likely due to the more concentrated reaction mixture in

- 73 the particles increasing the condensed-phase reaction rates.
- 74

75 **Table S1:** Details of the experiments performed with Gly and MeGly at different RH

Dry	Abs _{dry,368}	Abs _{p,368}	WSOC _{p,dry} \$	WSOC _p ^{\$}	Abs _{dry,368} /	Abs _{p,368} /	Dry/
channel	(A.U.)	(A.U.)	(ppb-C)	(ppb-C)	$WSOC_{p,dry}$	WSOC _p	Ambient#
RH (%)					(A.U.)(ppb ⁻¹)	(A.U.)(ppb ⁻¹)	

Exp-1	Gly +	50	5.1 × 10	5.2 × 10	9925	10350	5.1×10^{-7}	5.0×10^{-7}	1.02
	AS		-3	-3					
Exp-2	MeGly	50	3.7 × 10	4.2×10	2890	4723	1.2×10^{-5}	8.8×10^{-6}	1.42
	+ AS		-2	-2					
Exp-3	Gly+	33	6.1 × 10	5.6 × 10	3530	3905	1.7×10^{-6}	1.4×10^{-6}	1.22
	AS		-3	-3					
Exp-4	MeGly	25	8.6 × 10	9.0 × 10	98	173	8.7 × 10 ⁻⁵	5.2×10^{-5}	1.68
	+ AS		-3	-3					

 $76 \text{ *AS} = (\text{NH}_4)_2 \text{SO}_4$

77 \$Aqueous concentrations measured in the collected PILS samples

78 # Dry/Ambient = $(Abs_{dry,368}/WSOC_{p,dry})/(Abs_{p,368}/WSOC_{p})$

79

80 Text S3 ABSORBANCE ESTIMATION IN AN AMBIENT PARTICLE

81 To estimate the approximate contribution of Gly and MeGly to the total absorbance, we calculated the

82 mass absorption coefficient (MAC) of the ambient aerosol and used MAC to estimate the absorbance

83 signal strength equivalent to the total added concentration of Gly and MeGly assuming the high end of

84 reported ambient concentrations. MAC is the wavelength-specific absorbance per unit mass and is

85 calculated according to Chen & Bond, (2010) as:

86

$$MAC(\lambda) = \frac{A_{10}^{solution}(\lambda) \times \ln 10}{b \times C_{mass}} \operatorname{cm}^2 \mathrm{g}^{-1}$$

where, $A_{10}^{solution}(\lambda)$ is the base 10 absorbance at a given wavelength, b is the optical path length in cm, and 88 C_{mass} is the concentration in solution in g cm⁻³. For example, for an average ambient measurement from 89 this study, WSOC_p = 2.3 μ gC m⁻³ and Abs_{p,368} = 4.5 × 10⁻³, b = 50 cm, C_{mass} in the PILS sample is 16 × 10⁻ 90 9 g cm⁻³, would yield a *MAC* equal to 13000 cm² g⁻¹. Using *MAC* = 13000 cm² g⁻¹, and 50 ng m⁻³ Gly + 50 91 92 ng m⁻³ MeGly(45 ngC m⁻³ total) would provide $Abs_{p,368} = 1.0 \times 10^{-4}$, which is an order of magnitude smaller than the LOD of the LWCC employed in our study. The $Abs_{p,368}$ of 1.0×10^{-4} is likely an upper 93 bound of the Gly and MeGly contribution. Even though the MAC value estimated here is larger than most 94 95 laboratory studies, it is reasonable with respect to studies on ambient BrC ³⁻⁵.

96

Figure S4: WSOC_p and WSOC_{p,dry} are plotted and fitted to a straight line (black). Dashed green lines are 100 1:1. (a) Sampling conducted at an average RH = 41%, (b) Sampling conducted at an average RH = 35%.

101

103 Figure S5 The brief $WSOC_p$ spike above 6.0 μ g-C m⁻³ on 27-Aug was not included in the diurnal profile 104 averaging to prevent the influence of this maximum.

108

109 Figure S6: Diurnal profiles of particulate NH₄⁺, gas-phase NH₃, and Abs_{p.368}.

110

111 **References:**

- D. O. De Haan, a L. Corrigan, M. a Tolbert, J. L. Jimenez, S. E. Wood and J. J. Turley, Environ. 112 1 113 Sci. Technol., 2009, 43, 8184-8190.
- 114 2 M. H. Powelson, B. M. Espelien, L. N. Hawkins, M. M. Galloway and D. O. De Haan, Environ. 115 Sci. Technol., 2014, 48, 985–993.
- 116 3 Y. Chen and T. C. Bond, Atmos. Chem. Phys., 2010, 10, 1773-1787.
- H. Sun, L. Biedermann and T. C. Bond, Geophys. Res. Lett., 2007, 34, 1-5. 117 4
- 118 5 J. P. S. Wong, M. Tsagaraki, I. Tsiodra, N. Mihalopoulos, K. Violaki, M. Kanakidou, J. Sciare, A. 119 Nenes and R. J. Weber, Atmos. Chem. Phys., 2019, 19, 7319-7334.

120