Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Pharmaceutical and anticorrosive substance removal by woodchip column reactor: removal process and effects of operational parameters

Yu-Jung Tseng ^a, Webber Wei-Po Lai ^a, Hsin-hsin Tung ^a, Angela Yu-Chen Lin ^{a,b*}

^a Graduate Institute of Environmental Engineering, National Taiwan University, 71-Chou-Shan Road,

Taipei 106, Taiwan, ROC

^b International Graduate Program of Molecular Science and Technology, National Taiwan University

(NTU-MST), Taipei 106, Taiwan

(*corresponding author: yuchenlin@ntu.edu.tw; Tel: +886-2-3366-4386)

Contents Page 1–9 1 Text 3 Tables 6 Figures
 Table S1 Hydraulic properties of the experimental woodchip bioreactor columns.

column	woodchip type	drainable porosity ^a	specific retention $^{\rm b}$	total porosity ^c
Column_CA	Californian woodchips	0.5	0.34	0.84
Column_TW	Taiwanese woodchips	0.56	0.27	0.83

^a drainable porosity: draining the columns from the bottom over a 1 h period.

^b specific retention: measuring the difference between the wet woodchips that were removed from the column and dry woodchips that were dried in an oven at 50 °C for 48 hr.

^c Total porosity: summation of drainable porosity and specific retention.

Text S1 LC-MS/MS analysis.

The sample injection volume was 20 μ L. The autosampler was operated at room temperature. Quantifications were based on external standards. The detection limits for the seven target compounds were 1 μ g/L. Multiple reaction monitoring transition (MRM) was applied to identified target compounds. Detailed LC–MS/MS information is provided in Tables S2 and S3.

	(a)				
	ESI: positive mode				
Mobile	A: 0.1% formic acid in DI water				
phases	B: 0.1% formic acid in MeOH				
Time	Flow rate	Mobile A	Mobile B		
(min)	(µl/min)	(%)	(%)		
0.0	1000	95	5		
0.5	1000	95	5		
2.0	1000	5	95		
4.5	1000	5	95		
5.0	1000	95	5		
7.5	1000	95	5		

Table S2 LC gradient conditions for (a) ACE, CA	$\Gamma \Gamma$, $\Box DL$, $S\Gamma L$, $D \Gamma$, J -ivit $D \Gamma$ and (U) IDU .
--	---

(0)					
ESI: negative mode					
Mobile	A: 5 mM ammonium acetate in DI water				
phases	B: 5 mM ar	B: 5 mM ammonium acetate in MeOH			
Time	Flow rate	Mobile A	Mobile B		
(min)	(µl/min)	(%)	(%)		
0.0	1000	90	10		
0.5	1000	90	10		
2.0	1000	10	90		
4.5	1000	10	90		
5.0	1000	90	10		
7.0	1000	90	10		

(b)

Compound	Parent Ion (amu)	Product Ion (amu)	DPa	CE ^a	CXP ^a
ACE	152	93	32	32	4.1
		110	32	23.6	8.2
CAFF	195	110	35	30.4	8.3
		138	35	28.2	11
CBZ	237	192	43	29.1	15.6
		194	43	24.5	14
SFZ	256	92	40	36.5	4.4
		156	40	20	8
BT	120	92	50	24	6
		65	50	31	4
5-MeBT	134	106	50	24	8
		79	50	26	6
		77	50	36	5
IBU	205	161	-20	-9.7	-10.9

Table S3 Multiple reaction monitoring (MRM) mode experimental parameters.

^a DP: declustering potential; CE: collision energy; CXP: collision cell exit potential

Figure S1 Schematic diagram of the woodchip column experimental setup.

(c)

Figure S2 Target emerging contaminant removal in Column_CA in different regions: (a) in California, (b) in Taiwan and (c) removal (%) (condition: $[compound]_0 = 1 \text{ mg/L}; C/C_0$ represents the effluent concentration of the target compound divided by the influent concentration (C₀)).

Figure S3 Hydrolysis test of the target compounds (condition: $[compound]_0 = 100 \mu g/L$).

Figure S4 Sorption test of the target compounds by expanded clay (condition: $[compound]_0 = 100 \mu g/L$, expanded clay amount = 2 g, batch reactor volume = 100 mL; y axis shows the aqueous phase concentration of the target compounds).

Figure S5 Freundlich sorption isotherms of target compounds with Californian woodchips.

Figure S6 Effect of operation time on target emerging contaminant removal in Column_TW. (condition: [compound]₀ = 100 μ g/L; C/C₀ represents the effluent concentration of the target compound divided by the influent concentration (C₀)).