

1

Supplementary Material

2 **Methyl bromide production from dissolved organic matter under simulated**
3 **sunlight irradiation, and the important effect of ferric ions**

4 Hui Liu,^{*a} Tong Tong^a, Yingying Pu^a, Xiaomei Zhu^a, Bing Sun^a, Zhaowei Wang^a, Zhiyu Yan^a

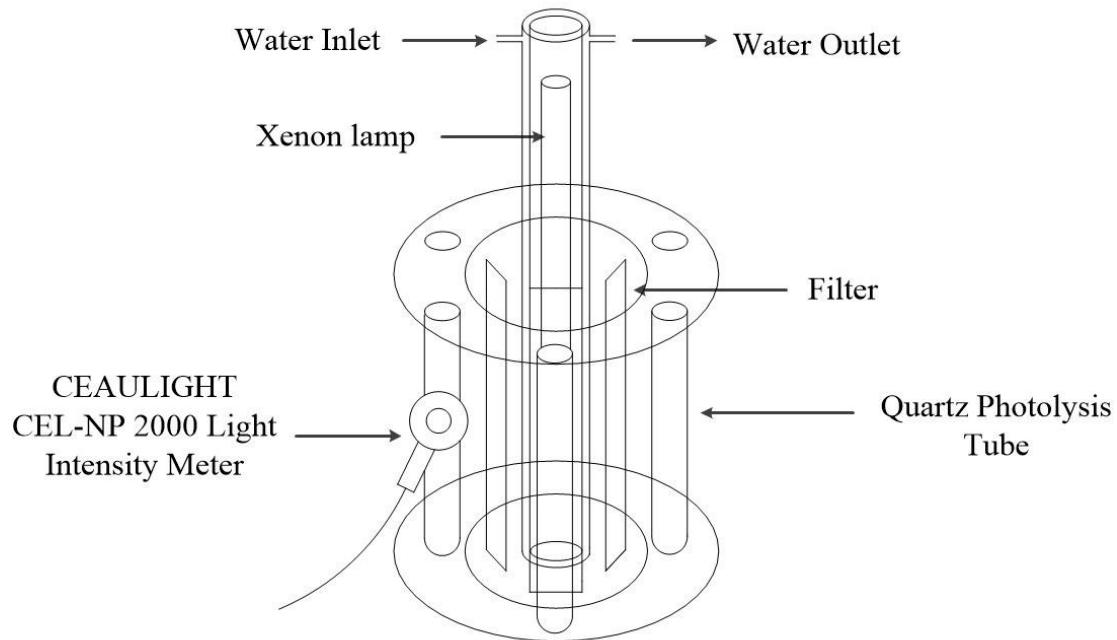
5 ^aCollege of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026.

6 *Corresponding author: Hui Liu, liuhui@dlmu.edu.cn

7 **Text S1.** The FTIR spectra of HA showed the typical bands for this type of material. Major bands
8 were described as follows: -OH stretching vibration absorption at 3500-2500 cm⁻¹, C-H stretching
9 vibration absorption of aliphatic series at 3000-2800 cm⁻¹, the band of asymmetric carboxyl
10 groups near 1567 cm⁻¹ and the symmetric COO- band around 1370 cm⁻¹, C-O stretching vibration
11 in alcohols, ethers and/or polysaccharides around 1050-1165 cm⁻¹, skeleton vibration and
12 stretching vibration of -C-C- at 900-1000 cm⁻¹.^{1,2}

13 **Text S2.** The addition of Fe(III) caused an obvious fluorescence quenching of the HA, indicating
14 that Fe(III)-HA complexing reactions occurred, and the binding ability of HA and Fe(III) can be
15 quantitatively described by the following equations:

16 HA + Fe = HA-Fe

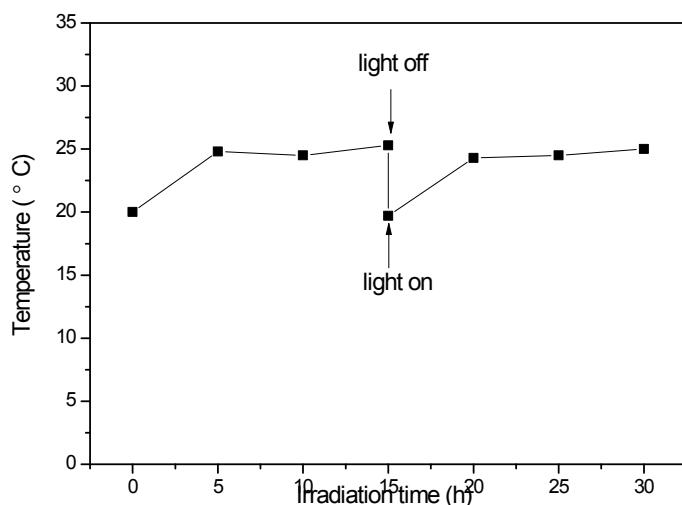

17 $K_C = [HA-Fe]/([HA][Fe])$

18 where [Fe] and [HA] are the concentrations of Fe(III) and organic ligands in HA, respectively, and
19 K_C is the conditional stability constant for complex formation between Fe(III) and HA.

20 The K_C value can be estimated using the modified Stern–Volmer equation (1).

21 $I_0/(I_0 - I) = 1/(fK_C [Fe]) + 1/f$

22 where I and I_0 are the fluorescence intensities of the samples with and without the addition of
23 Fe(III), respectively, and f is the fraction of the initial fluorescence that corresponds to the binding
24 fluorophores. The K_C value can be obtained from the slopes ($1/f K_C$) and intercepts ($1/f$) of the
25 linear plots of $I_0/(I_0 - I)$ versus $1/[Fe]$.

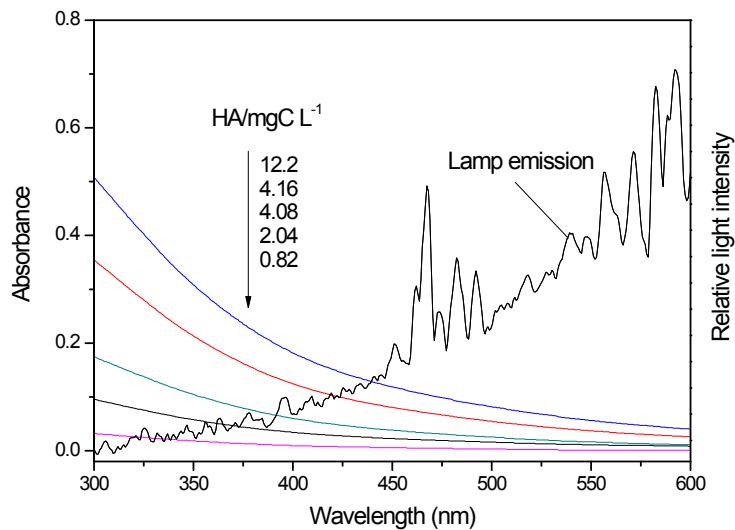


26

27

Fig. S1 Schematic of the device used for irradiation.

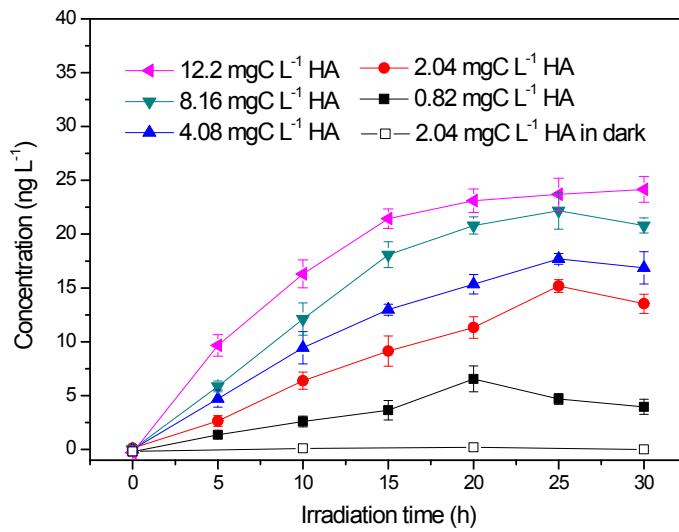
28 It is a so-called merry-go-round photoreactor. Xenon lamp was placed in a quartz jacket where
 29 cold water (10 °C) was driven by a cooling circulating pump to take away the heat of the infrared
 30 radiation. Eight pieces of filters were placed around the jacket to cut off the light with the
 31 wavelength below 290 nm. A light intensity meter (CEAULIGHT CEL-NP 2000) was used to
 32 measure the light intensity at the position where to place the quartz tubes.


33

34

Fig. S2 Temperature changes of the reaction solutions during irradiation.

35 The initial temperature of the solution was about 20 °C. Light was turned on around 7:00 am, and


36 turned off at 24:00 pm. The temperature of solutions rose to about 25 °C after 5 h irradiation and
37 maintained around 25 °C during 15 h irradiation. Then the solution was placed at room
38 temperature until next morning when the light was turn on again around 6:00 am.

39

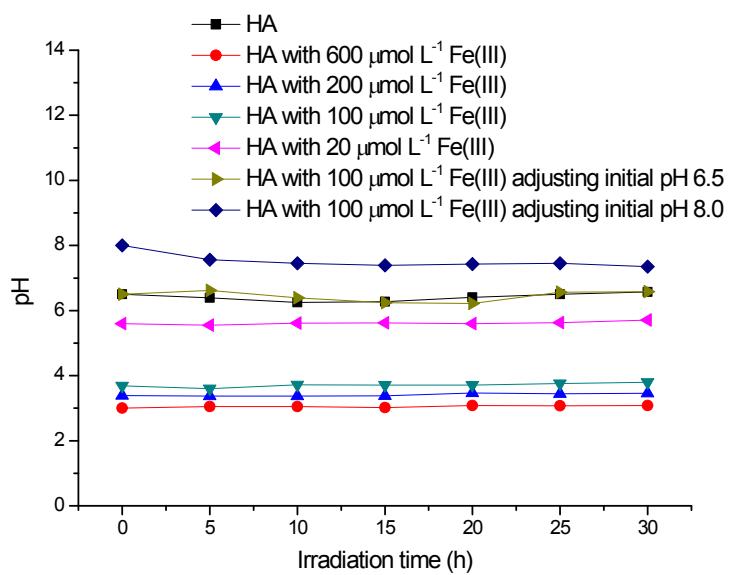
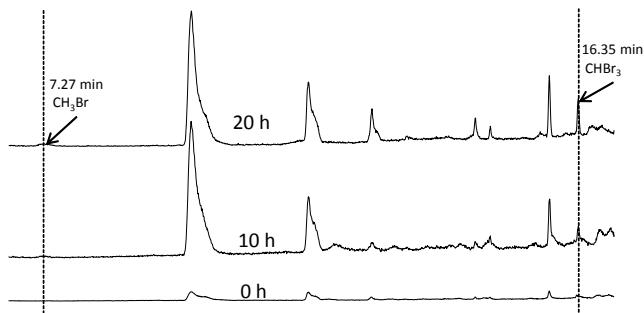

40

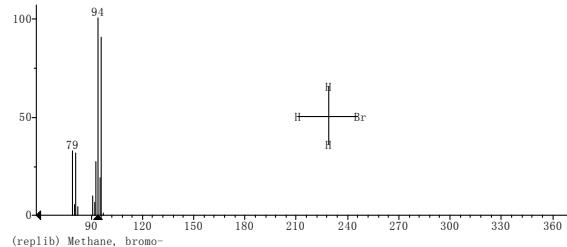
Fig. S3 HA absorption and Xenon lamp emission spectrum

41

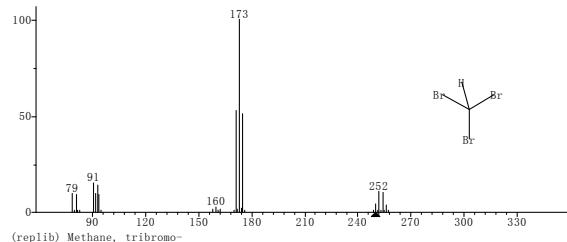
42 **Fig. S4** Production of methyl bromide (corrected for light screening) in the presence of different
43 concentrations of HA and 8 mmol L⁻¹ Br⁻.



44

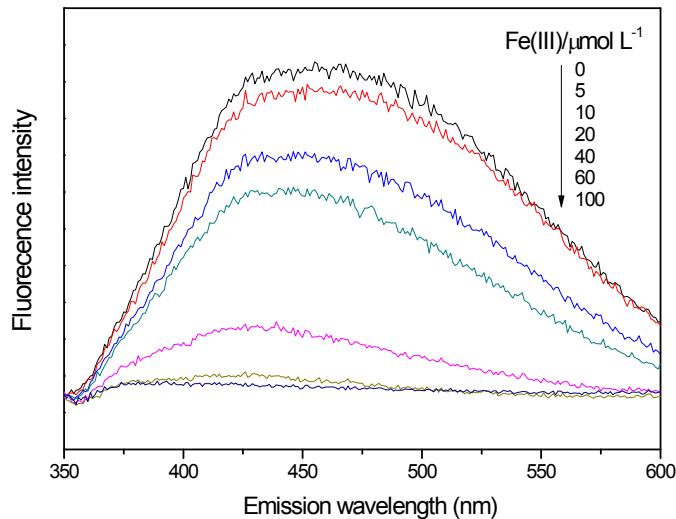

45 **Fig. S5** Initial pH of the solutions containing different concentrations of Fe(III) and changes of pH

46 during irradiation.


47

48

49


50

51 **Fig. S6** Chromatogram of the gases from the solutions containing 2.04 mgC L⁻¹ HA, 8 mmol L⁻¹

52 Br⁻ and 100 μmol L⁻¹ Fe(III) under irradiation of 0, 10 and 20 h, and the MS spectra of methyl

53 bromide and tribromomethane.

54

55

56 **Fig. S7** Fluorescence emission spectra of HA in the presence of Fe(III). $[HA]=8.16 \text{ mgC L}^{-1}$. The
57 excitation wavelength was 320 nm, and the emission wavelength ranged from 350 nm to 600 nm.

58

59 **Table S1** pH, TOC and concentrations of ions for the seawater

Parameters	Seawater
$\text{Cl}^- (\text{mM})$	459
$\text{Br}^- (\mu\text{M})$	683
$\text{SO}_4^{2-} (\text{mM})$	23.8
TOC (mg C/L)	2.6
pH	8.0

60 The pH of seawater was measured by a pH-meter (Mettler Toledo, S40-K). The total organic
61 carbon (TOC) concentration was determined by a TOC analyzer (Jena, Multi-N/C-2100S) after
62 the water samples were acidified with 1 M HCl and purged with nitrogen. Concentration of Cl^- ,
63 Br^- and SO_4^{2-} was measured by a ThermoFisher ion chromatography (DIONEX ICS-5000).

64

65 **Table S2** pH of the solutions containing different concentrations of Fe(III)

66

Fe(III) concentration ($\mu\text{mol L}^{-1}$)	pH
0	6.5
20.0	5.6
100	3.7
200	3.4

600	3.0
-----	-----

67

68 **Reference**

69 (1) D. Wan, V. K. Sharma, L. Liu, Y. Zuo, Y. Chen, Mechanistic insight into the effect of metal
70 ions on photogeneration of reactive species from dissolved organic matter. *Environ. Sci.
71 Technol.*, 2019, **53**, 10, 5778-5786.