Supporting Information (SI)

How does zinc oxide and zero valent iron nanoparticles impact the occurrence of antibiotic resistance genes in landfill leachate?

Jianhong Shi^{a,b}, Yinglong Su^{a,b}, Zhongjian Zhang^{a,b}, Huawei Wei^{a,b}, Bing Xie^{a,b,*}

^a Key Laboratory of Urbanization and Ecological Restoration of Shanghai, School of Ecology and Environmental Science, East China Normal University, Shanghai 200241, China, Tel. +86 021 54341276; email: bxie@des.ecnu.edu.cn

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

	Leachate		
	Μ	0	
РН	8.7(0.08)	9.0 (0.12)	
EC (ms/cm)	28.3(0.6)	15.1(0.2)	
DOC	9667(447)	1417(57)	
TN (mg/L)	5805(145)	4943(206)	
NH4 ⁺ -N (mg/L)	3040(158)	1304(49)	
TP(mg/L)	43.9 (9.6)	20.6 (6.7)	
Zn ²⁺ (mg/L)	0.13(0.01)	0.04(0.01)	
Fe ²⁺ (mg/L)	0.68(0.05)	0.64(0.04)	

Table S1 Characteristics of leachate used in NPs exposure studies

The letters "M" and "O" represented the middle-aged and old-aged leachate, respectively. Values in the brackets represent standard deviations of triplicate tests.

	Amplicon length	D 1	Linearity (R2)	
Targeted genes	(bp)	Primer sequences (5 ⁷ – 3 ⁷)	Efficiency (%)	
sul1	172	FW CACCGGAAACATCGCTGCA	0.99	
		RV AAGTTCCGCCGCAAGGCT	94	
sul2	165	FW CTCCGATGGAGGCCGGTAT	0.99	
		RV GGGAATGCCATCTGCCTTGA	92	
aadA1	195	FW AGCTAAGCGCGAACTGCAAT	0.99	
		RV TGGCTCGAAGATACCTGCAA	96	
strB	185	FW GCTCGGTCGTGAGAACAATCT	0.99	
		RV CAATTTCGGTCGCCTGGTAGT	99	
ermB	139	FW AAAACTTACCCGCCATAC CA	0.99	
		RV TTTGGCGTGTTTCATTGC TT	97	
mefA	186	FW ATACCCCAG CACTCAATTCG	0.99	
		RV CAATCACAGCACCCA ATACG	95	
tetM	205	FW CCGTTGGGAAGTGGAATGC	0.99	
		RV TCCGAAAATCTGCTGGGGTA	91	
tetQ	196	FW AGAATCTGCTGTTTGCCAGTG	0.99	
		RV CGGAGTGTCAATGATATTGCA	95	
bla _{CTX-M}	211	FW ATGTGCAGYACCAGTAARGTKATGGC	0.99	
		RV ATCACKCGGRTCGCCNGGRAT	105	
<i>bla</i> _{OXA}	195	FW CGGATGGTTTGAAGGGTTTATTAT	0.99	
		RV TCTTGGCTTTTATGCTTGATGTTAA	95	
Intl1	190	FW GGCTTCGTGATGCCTGCTT	0.99	
		RV CATTCCTGGCCGTGGTTCT	105	
Intl2	1/2	FW GTTATTTTATTGCTGGGATTAGGC	0.99	
	175	RV TTTTACGCTGCTGTATGGTGC	97	

Table S2 Primers and PCR conditions for ARG analyses

Figure S1 Relative abundance of bacteria at genera level in middle-aged (a) and oldaged (b) leachate with ZnO and Fe⁰ NPs. Genera of any one sample with greater than 1% abundance are listed.

Figure S2 Principal coordinate analysis (PCoA) based on the Bray-Curtis distance showing the overall distribution of bacterial community composition in leachate with ZnO NPs (a) and Fe⁰ NPs (b).

	ZnO NPs		Fe ⁰ NPs	
_	intl1	intl2	intl1	intl2
sul1	0.623**	0.626**	0.724**	0.650**
sul2	0.768**	0.359**	0.790**	0.435**
aadA1	0.775**	0.652**	0.781**	0.530**
strB	0.707**	0.498**	0.686**	0.609**
ermB	0.032	0.360**	0.025	0.385**
mefA	-0.027	0.602**	-0.051	0.683**
tetM	0.006	0.258*	0.006	0.594**
tetQ	0.052	0.310*	0.126	0.726**
<i>bla</i> _{OXA}	0.366*	-0.407**	0.417**	-0.533**
bla _{CTX-M}	-0.092	0.235*	-0.172	0.484**

Table S3 Spearman correlations between absolute ARG and MGE abundances in leachate with ZnO and Fe^0 NPs.

Values represent the correlation coefficient *R*-values derived from the Spearman correlation analysis. Significance levels are indicated: *p < 0.05, **p < 0.01, and ***p < 0.001.

Figure S3 The relative abundances of potential ARG-associated host bacteria at phylum level in middle-aged (M) and old-aged (O) leachate with ZnO NPs (a) and Fe⁰ NPs (b).

Figure S4 Changes of released ion concentrations from ZnO and Fe⁰ NPs in middleaged (M) and old-aged (O) leachate. Error bars represent one standard deviation of the mean from triplicate measurements.

Figure S5 Changes of physicochemical properties (including pH, EC, NH_4^+ -N, and DOC) in middle-aged (M) and old-aged (O) leachate with ZnO and Fe⁰ NPs. The values represent average amounts of triplicate tests.