Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

### **1** Supporting information

| 2  | Transformation of Ag ions to Ag nanoparticles-loaded AgCl microcubes in the plant root zone                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Huiyuan Guo, <sup>†</sup> Chuanxin Ma, <sup>§</sup> Lauren Thistle, <sup>†</sup> My Huynh, <sup>†</sup> Chenghao Yu, <sup>†</sup> Dan Clasby, <sup>#</sup> |
| 4  | Benny Chefetz, <sup>1</sup> Tamara Polubesova, <sup>1</sup> Jason C. White, <sup>§</sup> Lili He, <sup>‡,*</sup> Baoshan Xing <sup>†,*</sup>               |
| 5  | † Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA                                                                   |
| 6  | ‡ Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA                                                                          |
| 7  | § Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New                                                                 |
| 8  | Haven, CT 06511, USA                                                                                                                                       |
| 9  | # Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA                                                                 |
| 10 | Department of Soil and Water Sciences, Hebrew University of Jerusalem, Rehovot 76100,                                                                      |
| 11 | Israel                                                                                                                                                     |
| 12 |                                                                                                                                                            |
| 13 | *Corresponding Authors                                                                                                                                     |
| 14 | Dr. Baoshan Xing, Tel.: +1 413 545 5212; Fax: +1 413 577 0242; E-mail: <u>bx@umass.edu</u>                                                                 |
| 15 | Dr. Lili He, Tel.: +1 413 545 5847; Fax: +1 413 545 1262; E-mail: <u>lilihe@foodsci.umass.edu</u>                                                          |
| 16 |                                                                                                                                                            |
| 17 |                                                                                                                                                            |
| 18 |                                                                                                                                                            |

## 19 Methods

# Section 1. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM EDS) analysis

The particle suspension was placed on a silicon wafer and dried in a dark laminar flow hood. In order to minimize the charging interference and acquire high resolution images, a thin layer of gold (2-3 nm) was coated on the sample before SEM-EDS analysis.

#### 25 Section 2. Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR)

For both characterization methods, the particles in 0.5 mL sample were collected after 26 27 centrifugation (13,500 rpm, 30 min) and re-suspended in 30 µL of nanopure water. Prior to Raman 28 measurements, 5  $\mu$ L of particle suspension was deposited on a clean gold slide, dried in a dark laminar flow hood and analyzed by a DXR Raman Spectro-microscope (Thermo Scientific, 29 30 Madison, WI). The analysis was performed with a 789 nm laser at 5 mW, a  $10 \times \text{confocal}$ microscope objective, 50  $\mu$ m slit aperture, 2 s integration time, 3  $\mu$ m spot diameter, and 5 cm<sup>-1</sup> 31 spectral resolution in a range of 400-3400 cm<sup>-1</sup>. In addition, the formation of nAg in the samples 32 33 was confirmed by using a surface-enhanced Raman spectroscopy (SERS)-based method that was previous established in our group<sup>1</sup> with minor revision. The approach involves using ferbam as an 34 35 indicator molecule; the enhanced signals of the indicator-nAg complex can are readily detectable by SERS.<sup>1</sup> Briefly, ferbam (5 µL, 10 mg/L in H<sub>2</sub>O) was placed on the top of dried particles on the 36 gold slides. After air-drying in a dark laminar flow hood, the sample was analyzed by SERS using 37 38 the same settings as described above.

The attenuated total reflectance (ATR)-FTIR spectra were obtained using Perkin-Elmer Spectrum
One FTIR Spectrometer equipped with a Lithium tantalate (LiTaO<sub>3</sub>) detector and a one-reflection

| 41 | horizontal ATR accessory with a diamond Zn/Se crystal (Shelton, CT). Atmospheric background                      |
|----|------------------------------------------------------------------------------------------------------------------|
| 42 | subtraction and baseline correction were achieved through Spectrum software. The samples (2 $\mu L$ )            |
| 43 | were dropped on the small crystal (~1 cm) and air-dried. To ensure sufficient sample on the crystal,             |
| 44 | this process was repeated two additional times. Finally, the sample was analyzed for 200 scans                   |
| 45 | with a resolution of 8 cm <sup>-1</sup> and a scan speed of 1.0 cm/s in the range of 650-4000 cm <sup>-1</sup> . |
| 46 |                                                                                                                  |
| 47 |                                                                                                                  |
| 48 |                                                                                                                  |
| 49 |                                                                                                                  |
| 50 |                                                                                                                  |
| 51 |                                                                                                                  |
| 52 |                                                                                                                  |
| 53 |                                                                                                                  |
| 54 |                                                                                                                  |

# 55 Figures



Figure S1. (a) Influence of DPI (1  $\mu$ M) as a dehydrogenase inhibitor on the reduction of Ag<sup>+</sup> (1 mM) by the root enzyme extract (EE). (b) Formation of nAg as affected by deactivation of the root EE through boiling.



Figure S2. UV-Vis spectrum of TX-114 (1%, v/v) demonstrates an absorbance peak at 280 nm.



68

Figure S3. UV-Vis absorbance of the formed AgCl particles before (NL) and after removal ofAgCl (NL-AgCl).

71







Figure S5. Raman spectra of the formed particles at different time points (left panel) and the
main peak assignment at 24 h (right panel). \*Infrared and Raman spectroscopy: principles and

spectral interpretation/Peter Larkin. ISBN: 978-0-12-386984-5.



Figure S6. FTIR spectra of the formed particles at 0 h and 24 h (left panel) and the main peak
assignments at 24 h (right panel) \*Infrared and Raman spectroscopy: principles and spectral

90 interpretation/Peter Larkin. ISBN: 978-0-12-386984-5.



Figure S7. Surface-enhanced Raman spectroscopy (SERS) detection of the formed nAg by using
ferbam (10 mg/L) as an indicator.



Figure S8. Plot of 1/([AgCl]<sub>0</sub>-[nAg]<sub>t</sub>) versus time illustrates that the formation of nAg followed
a second order reaction.



Figure S9. Sunlight-induced transformation of AgCl (0-6 h) in nanopure water as shown in theimages and UV-Vis absorbance.



Figure S10. The transformation of Ag<sup>+</sup> over 24 h of light irradiation in the presence of organic 128 129 molecules with (b) and without (a) removal of Cl<sup>-</sup> in root exudates. The root exudates were collected from wheat plant roots exposed to 0.5 mM Ag<sup>+</sup>. After root exudate collection, 130 additional Ag<sup>+</sup> was added to ensure that Cl<sup>-</sup> ions were completely transformed to AgCl and 131 further removed by filtration through 100 kDa ultra-centrifugal filter membranes. It was noted 132 133 that the small peak in (b) at around 270 nm is the common optical adsorption peak of amino acids and proteins<sup>2,3</sup> in root exudates and not from remaining AgCl, because it was also observed 134 in root exudates without adding Ag<sup>+</sup> (Figure S11). 135

127



137

138

Figure S11. UV-Vis spectrum of wheat root exudates without adding Ag<sup>+</sup>.



Figure S12. Formation of nAg under sunlight irradiation (0-24 h) in root exudates that were
collected from live aquatic plants (*Lolium multiflorum*) treated with initial [Ag<sup>+</sup>] of (a) 0.5 mM,
(b) 0.1 mM, (c) 0.05 mM.



Figure S13. Photoreduction of AgCl at 0 h and 24 h of sunlight irradiation in root exudates that
were collected from live aquatic plants (*Lolium multiflorum*) treated with initial [Ag<sup>+</sup>] of (a) 0.5
mM, (b) 0.1 mM, (c) 0.05 mM.

# 148 **References**

- 149 1 H. Guo, Z. Zhang, B. Xing, A. Mukherjee, C. Musante, J. C. White and L. He, *Environ*.
- 150 *Sci. Technol.*, 2015, **49**, 4317–4324.
- 151 2 A. Aitken and M. Learmonth, *Protein Determination by UV Absorption*, Humana Press,
  152 Totowa, NJ, 2009.
- 153 3 H. Nakano, N. Tamai, M. Nii, M. Tsukamoto and N. Abe, *J. Laser Micro Nanoeng.*, 2007,
  154 2, 100–102.