Heterogeneous Conversion of SO₂ on Nano α-Fe₂O₃: the Effect of Morphology, Light Illumination and Relative Humidity

Kejian Li^a, Lingdong Kong^{a,b,*}, Assiya Zhanzakova^a, Songying Tong^a, Jiandong Shen^c, Tao Wang^a, Lu Chen^a, Qing Li^a, Hongbo Fu^a, Liwu Zhang^{a,d,*}

^a Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, People's Republic of China.

^b Shanghai Institute of Eco-Chongming (SIEC), No.3663 Northern Zhongshan Road, Shanghai
200062, People's Republic of China.

^c Hangzhou Environmental Monitoring Center, Hangzhou, People's Republic of China.

^d Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China

*Corresponding Author E-mail: <u>ldkong@fudan.edu.cn</u>, <u>zhanglw@fudan.edu.cn</u>

Preparation of α-Fe₂O₃ samples

Synthesis of nanocapsule-like α -Fe₂O₃ (α -Fe₂O₃-A): according to the reported procedure,¹ 0.2 mmol SDS was added into 40 mL deionized water under magnetic stirring. Then 2.0 mmol FeCl₃·6H₂O and 2.0 mmol CH₃COONa were added to the SDS solution orderly under stirring. The colorless transparent SDS solution transferred to turbid solution immediately after the FeCl₃·6H₂O and CH₃COONa were added. After being stirred for 20 min, the slurry was treated at 140 °C for 24 h in 50-mL Teflon-lined autoclave, and then cooled to room temperature naturally. The precipitate was centrifuged for 5 min under 4000 rpm. The obtained product was washed with deionized water and ethanol for 3 times, and then dried at 80 °C for 12 h. The obtained powders were finely ground and collected for experiments.

Synthesis of hollow nanoring-like α -Fe₂O₃ (α -Fe₂O₃-B): in a typical procedure,² 1.62 g FeCl₃·6H₂O was added into 300 mL deionized water with stirring to form a transparent solution. Then 0.0062 g NH₄H₂PO₄ and 0.023 g Na₂SO₄ were added respectively under stirring. After being stirred for 10 min, the solution was transferred into three 100-mL Teflon-lined autoclaves and maintained at 220 °C for 48 h. After the autoclave cooled to room temperature, the precipitate was separated by centrifugation, washed with deionized water and ethanol for 3 times. The product was dried at 80 °C for 12 h and finely ground for following experiments.

Synthesis of hexagonal nanoplate-like α -Fe₂O₃ (α -Fe₂O₃-C): according to previous work,³ 4 mmol FeCl₃·6H₂O was dissolved in 40.0 mL ethanol with a trace addition of deionized water (2.8 mL) under magnetic stirring. After dissolution, 3.2 g of CH₃COONa was added while stirring. The solution was transferred into 50-mL Teflon-lined autoclave and maintained at 180 °C for 12 h. Following natural cooling to room temperature, the products were centrifuged and washed with

distilled water and ethanol for 3 times. Then the product was dried at 80 °C for 12 h and finely ground.

Synthesis of agglomerated nanoparticle-like α -Fe₂O₃ (α -Fe₂O₃-D): according to the previously reported procedure,⁴ 40.4 g Fe(NO₃)₃ \bigcirc 39H₂O, 4.2 g NaHCO₃, 33.6 g KOH were added into 500, 50, 300 mL deionized water under stirring, respectively, and then the three solutions were heated to 363 K with water bath. Then mixed them together in a polyethylene bottle and the pH is adjusted to 8.0~8.5 before aging at 363 K for 48 h. After cooling to room temperature, the precipitate was centrifuged and washed with distilled water and ethanol for 3 times. Then the product was dried at 80 °C for 12 h and finely ground.

Table S1.	Parameters for	r uptake coe	efficient of	calculation

Parameter (unit)	Value	
Sulfate formation rate: d[SO ₄ ²⁻]/dt (ion·s ⁻¹)	According to reactions	
$A_{BET} \left(m^2/g \right)$	Shown in Table 1	
A_{geo} (m ²)	7.85×10 ⁻⁵	
Reactant concentration: c_{SO_2} (molecule·m ⁻³)	7.37×10 ¹⁹	
Gas constant: R (J·mol ⁻¹ ·K ⁻¹)	8.314	
Temperature: T (K)	298	
Molar mass: M_{SO_2} (Kg·mol ⁻¹)	6.4×10 ⁻²	
π (dimensionless)	3.14	

Figure S1. In situ DRIFTS spectra of different samples (1400~900 cm⁻¹) under light illumination. a, α-Fe₂O₃-A.

b, α -Fe₂O₃-B. c, α -Fe₂O₃-C. d, α -Fe₂O₃-D.

Figure S2. In situ DRIFTS spectra of collected on α -Fe₂O₃ samples (3720-3560 cm⁻¹) under light illumination.

a, α -Fe₂O₃-A. b, α -Fe₂O₃-B. c, α -Fe₂O₃-C. d, α -Fe₂O₃-D.

Figure S3. Calculated ions of sulfates on different α-Fe₂O₃ samples under light illumination.

Figure S4. The spectrum of the Xe lamp with optical fiber (model CEL-TCX250, Beijing Jin Yuan Science and

Technology Co., Ltd.).

Figure S5. In-situ DRIFTS spectra collected at 120 min on α-Fe₂O₃-C under different 68% RH saturation time.

Supplementary References

- 1. C. Su and H. Wang, Capsule-like α -Fe₂O₃ nanoparticles: Synthesis, characterization, and growth mechanism, Crystal Research & Technology, 2012, **47**, 896-902.
- C. J. Jia, L. D. Sun, F. Luo, X. D. Han, L. J. Heyderman, Z. G. Yan, C. H. Yan, K. Zheng, Z. Zhang, M. Takano, N. Hayashi, M. Eltschka, M. Klaui, U. Rudiger, T. Kasama, L. Cervera-Gontard, R. E. Dunin-Borkowski, G. Tzvetkov and J. Raabe, *Large-scale synthesis of single-crystalline iron oxide magnetic nanorings, Journal of the American Chemical Society*, 2008, **130**, 16968-16977.
- 3. L. Chen, X. Yang, J. Chen, J. Liu, H. Wu, H. Zhan, C. Liang and M. Wu, *Continuous shape*and spectroscopy-tuning of hematite nanocrystals, Inorganic chemistry, 2010, **49**, 8411-8420.
- 4. P. D. D. h. c. U. Schwertmann and D. R. M. Cornell, *Iron Oxides in the Laboratory: Preparation and Characterization, Clay Minerals*, 1992, **27**, 393-393.