Supporting Information

Silver Sulfide Nanoparticles in Aqueous Environments: Formation, Transformation and Toxicity

Di He¹, Shikha Garg², Zimeng Wang³, Lingxiangyu Li⁴, Hongyan Rong², Xiaoming Ma¹,

Taicheng An1* and T. David Waite²

- ¹ Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
- ²Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- ³Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
- ⁴Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Environmental Science: Nano

January, 2019

Corresponding author: Professor Taicheng An, Email: antc99@gdut.edu.cn

Figure S1. Calculation of ΔG for the reaction between Ag(0) and H₂S as a function of [H₂S]. The reaction between Ag(0) and sulfide may occur as following (Eq. S1),

$$2Ag(0) + H_2S \rightarrow Ag_2S + H_{2(g)}$$
(S1)

At equilibrium,

$$\log K = \log Q = -\log[\mathrm{H}_2 \mathrm{S}_{(\mathrm{aq})}] + \log[\mathrm{H}_{2(\mathrm{aq})}]$$
(S2)

where log K = 2.0327 and [H_{2(aq)}] normally in water is 4.29×10^{-7} M at 25°C, then

$$[H_2S_{(aq)}] = 3.98 \times 10^{-9} M \tag{S3}$$

As such, when the concentration of $H_2S_{(aq)}$ is over ~4 nM, the reaction of Ag(0) with H_2S under anoxic environment is favored.

 ΔG in Figure S1 can be calculated as a function of [H₂S],

$$\Delta G = 2.3RT \log(Q/K) \tag{S9}$$

where T = 298 K, R = 8.314 J K⁻¹ mol⁻¹, K = 2.0327 and $[H_{2(aq)}] = 4.29 \times 10^{-7}$ M at 25°C.

The oxygenation of Ag₂S may occur as following (Eq. S5):

$$Ag_2S_{(s)} + O_2 \rightarrow 2Ag^+ + SO_4^{2-}$$
(S5)

At equilibrium,

$$\log K = -\log[O_{2(aq)}] + 2\log[Ag^{+}] + [SO_{4}^{2^{-}}]$$
(S6)

where log K = 102.28 and $[O_{2(aq)}] = 0.25$ mM under air-saturated conditions at 25 °C. According to Eq. S4, ΔG is always <0 under oxic environments where concentrations of Ag⁺ and SO₄²⁻ are in the typical concentrations. The oxygenation of Ag₂S may occur as following (Eq. S7):

$$Ag_2S_{(s)} + O_2 \rightarrow 2Ag^+ + SO_4^{2-}$$
(S7)

The reaction quotient (Q) is:

$$\log Q = -\log[O_{2(aq)}] + 2\log[Ag^+] + [SO_4^{2-}]$$
(S8)

where $[O_{2(aq)}] = 0.25$ mM under air-saturated conditions. Comparison of Q (actual composition) with the value of K (equilibrium composition) determines if the reaction can occur ($\Delta G < 0$):

$$\Delta G = 2.3RT \log(Q/K) \tag{S9}$$

where at 25 °C log K = 102.28; T = 298 K and R = 8.314 J K⁻¹ mol⁻¹. As such, $\Delta G < 0$ under oxic environments where concentrations of Ag+ and SO₄^{2–} are in the range of micromolar to millimolar.

Figure S2. Thermodynamic speciation calculation showing % Ag present as dissolved AgCl complexes for varying total Ag(I) and Cl⁻ concentrations at pH 8.0 in the presence of 1 μ M of total sulfide.

Figure S3. Effect of dissolved oxygen on light irradiation induced dissolution kinetics of Ag₂S-NPs in the presence of Fe(III). Symbols are experimental data from Li et al¹; Lines in Figure SI are the model fittings based on reaction scheme I (Table 1) under various air saturation conditions. Experimental conditions: $[Ag_2S-NPs]_0 = 5.0 \text{ mg } \text{L}^{-1}$; $[Fe(III)]_0 = 2.0 \text{ mg } \text{L}^{-1}$; pH = 5.0. Reprinted with permission from the American Chemical Society.

References

 Li, L. X. Y.; Zhou, Q. F.; Geng, F. L.; Wang, Y. W.; Jiang, G. B., Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe(II, III) redox cycling. *Environ. Sci. Technol.* 2016, *50*, (24), 13342-13350.