Electronic Supplementary Information

SnSe@SnO₂ core-shell nanocomposite for synchronous photothermal-photocatalytic production of clean water

Zhuo Li,^a Lei Sun,^a Yang Liu,^a Lin Zhu,^a Dengfeng Yu,^b Yuanlin Wang,^a Ye Sun,^{*b} and Miao Yu^{*a}

^a State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and

Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

^b Condensed Matter Science and Technology Institute and Department of Physics, School of Science,

Harbin Institute of Technology, Harbin 150080, China

*Corresponding authors

Email address: miaoyu_che@hit.edu.cn (Y. Miao), sunye@hit.edu.cn (Y. Sun).

Fig. S1 Transient photocurrent response of the SnSe@SnO₂ and SnSe samples.

Fig. S2 UV–vis–NIR absorption spectra of the fresh SnSe@SnO₂ NPs dispersion and the dispersion exposed to air at room temperature for one week.

Fig. S3. UV–vis–NIR absorption spectra of pure MO solution, and MO solution in the presence of SnSe@SnO₂, SnSe, SnO₂ and P25, measured in the dark.

Fig. S4 UV-vis-NIR absorption spectra of MO solution in the photocatalytic process of SnSe@SnO₂ under solar light irradiation.

Fig. S5 UV–vis–NIR absorption spectra of MO solution in the photocatalytic process of P25 under solar light irradiation.

Fig. S6 UV-vis-NIR absorption spectra of MO solution in the photocatalytic process of SnSe under solar light irradiation.

Fig. S7 UV–vis–NIR absorption spectra of MO solution in the photocatalytic process of SnO_2 under solar light irradiation.

Fig. S8 UV-vis-NIR absorption spectrum of the photothermal evaporated water.