Electronic Supplementary Information (ESI) for

Environmental Science: Nano.

Ligand Directed Debromination of Tetrabromodiphenyl Ether

Mediated by Nickel under Visible Irradiation

Yan Wei,^{ab} Yanjun Gong, ^{ab} Xin Zhao, ^{ab} Yuanyuan Wang, ^{ab} Ran Duan,^a Chuncheng

Chen, ^{ab} Wenjing Song* ^{ab} and Jincai Zhao ^{ab}

^aKey Laboratory of Photochemistry, CAS Research/Education Center for Excellence

in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing,

100190, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing 100039, P. R. China

Email address: wsongunc@iccas.ac.cn

Product analysis

2,2',4,4'-tetrabromodiphenyl ether (BDE47) was analyzed by Agilent HPLC 1260 system with DAD detector and a DIKMA C-18 column (250×3 mm). The mobile phase was 10% H₂O and 90% CH₃CN (v/v%) at 0.2 mL·min⁻¹. The retention time of BDE47 was 28.16 min.

The debromination products of BDE47 were analyzed by Agilent GC7890 gas chromatograph with a DB-5 column (15 m×320 μ m×0.25 μ m) and an μ -ECD detector. The column temperature was held at 100 °C for 2 min. Then column temperature was increased to 230 °C at 15 °C·min⁻¹ and then to 270 °C at 5 °C·min⁻¹. The temperature of injector was 300 °C, and the temperature of detector was 325 °C. The flow rate of argon carrier gas was 2.9 mL·min⁻¹. The retention time of BDE47 was 11.423 min, the retention time of 2,4,4'-tribromodiphenyl ether (BDE28) was 9.988 min, the retention time of 2,2',4-tribromodiphenyl ether (BDE17) was 9.801 min, the retention time of 4,4'-dibromodiphenyl ether (BDE15) was 8.552 min, the retention time of 2,2'bromodiphenyl ether (BDE4) or 2,4-bromodiphenyl ether (BDE7) was 8.128 min, the retention time of 4-bromodiphenyl ether (BDE3) was 6.47 min, and the retention time of 2-bromodiphenyl ether (BDE1) was 6.26 min.

Diphenyl ether (DE) was analyzed by an Agilent 7890 GC with an Agilent DB-VRX column (20 m×180 μ m×1 μ m) and a flame ionization detector (FID). The column temperature was held at 40 °C, keeping for 3 min. Then column temperature was increased to 160 °C at 10 °C·min⁻¹ and kept at this temperature for 3 min. Then column temperature was increased to 200 °C at 10 °C·min⁻¹. The temperature of injector was 200 °C, and the temperature of detector was 325 °C. The flow rate of the nitrogen carrier gas was 5 mL·min⁻¹. The retention time of DE was 20.056 min.

4'-Bromoacetophenone was analyzed by an Agilent HPLC 1260 system with a Dikma Diamonsil C-18 column ($250 \times 2.1 \text{ mm}$, $3 - \mu \text{m}$ film thickness). The mobile phase was 60% water and 40% acetonitrile (v/v%) at 0.2 mL·min⁻¹.

The concentration of Br was quantified by ion chromatography (DX-900) with an IonPac AS23 column. The eluent was 15 mM KOH aqueous solution at a flow rate of 0.7 mL·min⁻¹.

Fig. S1. (A) XRD patterns of $g-C_3N_4$ and $Ni-g-C_3N_4$. (B) N_2 adsorption/desorption isotherms of $g-C_3N_4$ and $Ni-g-C_3N_4$.

Fig. S2. Electron paramagnetic resonance (EPR) spectra of reaction suspension in methanol containing 2 $g \cdot L^{-1} g \cdot C_3 N_4$ with 2 wt.% of NiCl₂ after 4 hours of irradiation in the absence or presence of trimethylamine (TEA).

Fig. S3. Degradation of BDE47 catalyzed by *in-situ* formed Ni on $g-C_3N_4$ in the mixture of methanol and TEA (v/v=19:1) or the mixture of ethanol and TEA (v/v=19:1).

Fig. S4. (A) Degradation of BDE47 catalyzed by *in-situ* formed Ni on $g-C_3N_4$ with different sacrificial reagents. (B) Electron paramagnetic resonance (EPR) spectra of reaction suspension in methanol containing 2 $g\cdot L^{-1}$ $g-C_3N_4$ with 2 wt.% of NiCl₂ after 4 hours of irradiation with different sacrificial reagents.

Fig. S5. Degradation of BDE47 in a suspension of $g-C_3N_4$ with 2 to 10wt.% of NiCl₂. Irradiation was provided by a 300 W Xe lamp with a 420 nm long pass filter. All experiments were conducted under Ar at 298K in a methanol/TEA mixture with 2 $g\cdot L^{-1}$ catalyst.

Fig. S6. Conversion of 10 μ M BDE47 at 2 hours in three consecutive reactions by adding fresh BDE47 stock solution.

Fig. S7. (A) HPLC chromatograms of BDE47. (B) GC- μ ECD chromatograms of the debrominated products at various irradiation time. (C) Generation of DE detected by GC after 1400 min irradiation catalyzed by Ni-g-C₃N₄.

Fig. S8. Degradation of BDE47 catalyzed by Ni-g-C₃N₄, Cu-g-C₃N₄ (> 420 nm irradiation), and Ni-TiO₂ (> 360 nm irradiation) in methanol/TEA mixture.

Fig. S9. GC- μ ECD chromatograms of the debrominated products of BDE47 catalyzed by Ni-TiO₂ at various irradiation time.

Fig. S10. HPLC chromatograms of product during debromination of 4'bromoacetophenone with N-methylpyrrole as the aryl radical scavenger.

Fig. S11. Calculated charge distributions of TEA and TEOA with or without the coordinated Ni⁰ atom. The distance between Ni and N and the C-N bond lengths was

indicated in the modeled configurations. Charge distributions was calculated by B3LYP/6-31G(d), Gaussian 09 Program.¹

Fig. S12. Ball-and-stick models: (A) BDE47; Ni⁰ next to (B) *para*-Br of BDE47 and (C) *ortho*-Br of BDE47.

Table S1. Concentration of Br⁻ in debromination of BDE47 under different reaction conditions

Irradiation	Time (h)	C [Br] (M)
>420 nm	1.5	1.8× 10 ⁻⁵
>420 nm	23	3.2×10^{-5}
>360 nm ^a	24	3.9 × 10 ⁻⁵

Reaction conditions: CH₃OH (19 mL), TEA (1 mL), BDE47 (10⁻⁵ M), catalyst (40 mg), Ar, under visible-light irradiation (> 420 nm) or ultraviolet light irradiation (> 360 nm).

^aYield of diphenyl ether at 16 h was 50% but decreased to 42.5% after 24 h of

irradiation. There might be pathways (e.g., carbon oxygen bond cleavage²) for DE decomposition under UV irradiation.

Entry	Substrate	Product	Time (h)	yield (%)
1ª	Br		3	98%
2 ^b	Br		24	85%
<u>3</u> a	Br		24	43%

Table S2. Hydrodebromination of selected substrates catalyzed by Ni-g-C₃N₄.

Reaction conditions: CH₃OH (19 mL), TEA (1 mL), substrates (a100 μ M, b10 μ M), catalyst (40 mg), Ar, under visible-light irradiation (> 420 nm, 300 mW \cdot cm⁻²)

Table S3. Amount of consumed BDE47 and generated H_2 at different time during irradiation with (A) TEA or (B) TEOA as the electron/hydrogen donor.

(A)

Conversion	n1(BDE47)	n2(H ₂)
%	(µmol)	(µmol)
0	0	0
44.8	0.09	0.08
84.5	0.17	0.20
100	0.20	0.33
100	0.20	0.42
	% 0 44.8 84.5 100	% (μmol) 0 0 44.8 0.09 84.5 0.17 100 0.20

(B)

Time	Conversion	n1(BDE47)	n2(H ₂)
(min)	%	(µmol)	(µmol)
0	0	0	0
30	5.62	0.01	0.36
60	9.54	0.012	0.92
90	13.5	0.02	1.42
120	16.2	0.03	1.89

Adsorption state of BDE47	Bond length (Å)			
	Ortho-position		Para-position	
	C-Br ₂	C-Br ₂ '	C-Br ₄	C-Br ₄ '
Free	1.902	1.902	1.908	1.908
Ni ⁰ -Br _{para}	1.901	1.902	1.990	1.908
Ni ⁰ -Br ortho	1.989	1.902	1.908	1.908

Table S4. Bond lengths of C-Br bonds in BDE47 obtained by DFT calculation shown in Fig. S12.

References

- (1) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb. etc.,
- Gaussian 09, Revision B.01, Gaussian, Inc.: Wallingford, CT, 2009.
- (2) M. Guo, J. Peng, Q. Yang and C. Li, Highly active and selective RuPd bimetallic NPs for the cleavage of the diphenyl ether C–O bond, ACS. Catal., 2018, 8, 11174-11183.