Supplementary information

Unique mesoporous amorphous manganese iron oxide with excellent catalytic performance for benzene abatement under UV-Vis-IR and IR irradiation

Cheng Chen, Yuanzhi Li,* Yi Yang, Qian Zhang, Jichun Wu, Xuan Xie, Zhengkang Shi, Xiujian Zhao State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China. E-mail: <u>liyuanzhi66@hotmail.com</u>

Table S1. The thermocatalytic activity of the catalysts in this work and the reported works.

Catalysts	VOC type	VOC conc. (ppm)	Space velocity $(mLg^{-1}h^{-1})$	$T_{50}(^{\circ}C)$	$T_{90}(^{\circ}C)$	Reference
3D hierarchical Co_3O_4	toluene	1000	48000	240	248	[11]
MnO _x -CeO ₂	toluene	600	50000	239	254	[14]
manganese oxides	toluene	4000*	16,000	245	258	[8]
rod-like α -MnO ₂	toluene	1000	20000	210	225	[7]
mesoporous Co ₃ O ₄	benzene	498	90000	215	245	[10]
ZnCo ₂ O ₄	benzene	498	90000	212	236	[10]
CeO ₂ -MnO _x	benzene	1000	60000	263	325	[13]
amorphous Mn _x FeO _y	benzene	2000*	48000	192	244	this work

Note: * the concentration unit is mg m⁻³.

Figure S1. N2 adsorption/desorption isotherms (A) and BJH adsorption pore size distribution (B) of MnOx-

Fe₂O₃-180.

Figure S2. N₂ adsorption/desorption isotherms (A) and BJH adsorption pore size distribution (B) of Mn_xFeO_y-70.

Figure S3. XRD patterns of the pure Fe₂O₃ sample.

Figure S4. HAADF image (A) and EDX mappings of Mn, Fe, and O (B, C, D) for the used Mn_xFeO_y-70 sample after the 32 h photothermocatalytic durability tests.

Figure S5. TEM (A) and HRTEM (B) images of the used Mn_xFeO_y -70 sample after the 32 h photothermocatalytic durability tests.

Figure S6. XRD patterns of the used Mn_xFeO_y -70 sample after the 32 h photothermocatalytic durability tests.