Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

Supporting Information

# Environmental release from automotive coatings are similar for different (nano)forms of pigments

Emmanuel Ruggiero, a Klaus Vilsmeier, a Philipp Mueller, a Sorin Pulbere, a and Wendel Wohlleben a\*

<sup>a</sup> BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen, 67056 (Germany).

#### **INSTRUMENT DETAILS**

## Scanning Electron Microscope (SEM)

The white pigment  $TiO_2$  (non nano) was characterized using a a JEOL 7500F high-resolution scanning electron microscope with a cold field effect emitter. All images were obtained at 5kV acceleration voltage.

## Transmission Electron Microscopy (TEM)

TEM samples were investigated on a Tecnai G2-F20ST machine (FEI Company, Hillsboro, USA) operated at 200 keV. Energy Dispersive X-ray spectroscopy (EDXS) was applied to determine chemical compositions at distinct spots of the sample using an EDXi-detection system with an energy resolution of 131 eV at Mn-K $\alpha$  (EDAX, Mahwah, USA). Images and spectroscopy data were evaluated using the Olympus (Tokyo, Japan) iTEM 5.2 (Build 3554) and FEI TIA 4.1.202 software package.

#### Colorimetry

The colorimetric characterization of the plates was obtained using datacolor spectrophotometer SF 600. The measurements were performed in specular excluded (SPEX) mode with a wavelength range of 400-700 nm. Colorimetric evaluations were made in agreement with the spectral method described in ISO 18314-1 (2015) with d8° geometry. Test features  $\Delta L^*$ ,  $\Delta a^*$  and  $\Delta C^*$  were evaluated in accordance with ISO 11664-4 (2008) for light source D65 and 10° standard observer from the measurements over a white substrate.

|                                           | DPP_nano                                           | DPP_non-nano                                                   | DPP_premixed                                                   | Fe <sub>2</sub> O <sub>3</sub>                                 | Cuphthalocyanine                                             |
|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| Primary particle<br>diameter (TEM,<br>nm) | 42                                                 | 230                                                            | 233                                                            | 9                                                              | 17                                                           |
| Surface area<br>(BET, m²/g)               | 94                                                 | 16                                                             | 17                                                             | 107                                                            | 53                                                           |
| Composition<br>(XPS, at%)                 | 77.1% C;<br>10.9% O;<br>5.9% N; 6.1%<br>non metals | 79.4% C; 9.9%<br>O; 5.1% N; 0.3%<br>metals; 5.2%<br>non metals | 73.5% C; 9.5%<br>O; 8.1% N; 0.4%<br>metals; 8.6%<br>non metals | 15.7% C; 54.2%<br>O; 0% N; 28.2%<br>metals; 1.9%<br>non metals | 80.5% C; 9% O;<br>8.5% N; 1.4%<br>metals; 0.7% non<br>metals |
| Zeta potential<br>(pH 7.4, mV)            | -16                                                | -41                                                            | -30                                                            | -27                                                            | - 11                                                         |
| Water contact<br>angle (θ)                | 135                                                | 136                                                            | 103                                                            | 10                                                             | 138                                                          |

Table S1. Basic physic- chemical characteristics of pigments investigated in this work

| Sample                    | Aging month | dL*   |
|---------------------------|-------------|-------|
|                           | 0           | -     |
| control                   | 1           | 11.92 |
| control                   | 2           | 14.67 |
|                           | 3           | 18.39 |
|                           | 0           | -     |
| CuDhthalaguaning matrix 2 | 1           | 0.80  |
| CuPithalocyanine_matrix-2 | 2           | 3.48  |
|                           | 3           | 2.28  |

Table S2. Colorimetric properties (dL\*) of control and CuPhthalocyanine acrylic plates subjected to NanoRelease protocol.

| Weath                     | UV     | -vis            |           | AUC       |        |          |
|---------------------------|--------|-----------------|-----------|-----------|--------|----------|
| Specimen                  | Months | Sampling mathed | Avg.      | Std. Dev  | Avg.   | Std. Dev |
| specifien                 | wonths | Sampling method | OD 350 nm | OD 350 nm | mg/m²  | mg/m²    |
|                           | 0      | shaker          | 2.20      | 0.40      | 201.3  | 34.7     |
| matrix-2                  | 1      | shaker          | 3.45      | 1.85      | 103.3  | 102.0    |
|                           | 2      | shaker          | 18.60     | 0.60      | 78.7   | 12.0     |
|                           | 3      | shaker          | 17.50     | 0.90      | 156.7  | 103.3    |
|                           | 0      | sonication      | 0.25      | 0.05      | 172.7  | 144.7    |
| matrix-2                  | 1      | sonication      | 2.65      | 0.55      | 289.3  | 4.0      |
|                           | 2      | sonication      | 9.65      | 2.95      | 710.7  | 162.7    |
|                           | 3      | sonication      | 15.10     | 0.60      | 2354.7 | 312.0    |
|                           | 0      | shaker          | 0.095     | 0.025     | 117.3  | 65.3     |
|                           | 1      | shaker          | 0.165     | 0.025     | 63.3   | 2.0      |
| CuPhthalocyanine_matrix-2 | 2      | shaker          | 0.205     | 0.015     | 74.7   | 28.0     |
|                           | 3      | shaker          | 0.330     | 0.010     | 133.3  | 16.0     |
|                           | 0      | sonication      | 0.145     | 0.035     | 226.7  | 40.0     |
| CuPhthalocyanine matrix-2 | 1      | sonication      | 0.245     | 0.015     | 47.3   | 46.0     |
|                           | 2      | sonication      | 0.370     | 0.040     | 72.7   | 35.3     |
|                           | 3      | sonication      | 0.485     | 0.005     | 46.0   | 11.3     |

Table S3. UV-vis spectroscopy and analytical ultracentrifuge analysis of leached water from plates weathered for 0, 1, 2 and 3 months.

| Weathering                               | UV-V               | /is    | AUC       |       |          |
|------------------------------------------|--------------------|--------|-----------|-------|----------|
|                                          | Sampling<br>Method | Avg.   | Std. Dev. | Avg.  | Std. Dev |
| Specimen                                 |                    | OD 350 | OD 350    | mg/m² | mg/m²    |
|                                          |                    | nm     | nm        |       |          |
| motrix 2                                 | Shaker             | 18.6   | 0.60      | 78.7  | 12.0     |
| matrix-2                                 | Sonication         | 9.70   | 2.95      | 710.7 | 162.7    |
| CuPhthalaguaning matrix 2                | Shaker             | 0.21   | 0.015     | 74.7  | 28.0     |
| Cupitinalocyanine_matrix-z               | Sonication         | 0.37   | 0.04      | 72.7  | 35.3     |
| Fo O motrix 2                            | Shaker             | 0.21   | 0.03      | 195.3 | 76.6     |
| Fe <sub>2</sub> O <sub>3</sub> _matrix-2 | Sonication         | 0.39   | 0.04      | 27.3  | 7.3      |
| DDD nano matrix 2                        | Shaker             | 0.39   | 0.05      | 56.7  | 20.7     |
| DPP_nano_matrix-z                        | Sonication         | 0.64   | 0.23      | 104.7 | 2.0      |

Table S4. Data of UV-vis spectroscopy and analytical ultracentrifuge for matrix-2 plates aged for 2 months.



Fig. S1. TEM pictures of the released fragments from  $Fe_2O_3$  (A, B) and DPP (C, D) acrylic plates after 2 month of Kalahari protocol. EXD spectroscopy confirmed the presence of iron and titanium particles in the leached water.



Fig. S2. Analytical ultracentrifuge data of immersion water from (A) matrix-2 and (B) matrix-2 and -1 plates after 2 months of aging. All the drop-off suspensions were subjected to (plotted as shaded bar) sonication or (plotted as filled bar) shaking stimulation.



Fig. S3. UV-vis spectra overlap of the three groups of pigments (blue CuPhthalocyanine, red DPP, brown  $Fe_2O_3$ ) investigated in this work

| Sample                     | Month | Method      | UV-vis 280 nm | AUC conc mg/m <sup>2</sup> |  |  |  |
|----------------------------|-------|-------------|---------------|----------------------------|--|--|--|
| DPP Plate                  |       |             |               |                            |  |  |  |
| Pre-mixed                  | 2     | Sonication  | 0.14          | 111.4                      |  |  |  |
|                            | 2     | Shaker 0.01 |               | 124.3                      |  |  |  |
| Non-Nano                   | 2     | Sonication  | 0.15          | 94.3                       |  |  |  |
|                            | 2     | Shaker      | 0.01          | 117.9                      |  |  |  |
| Nano                       | 2     | Sonication  | 0.16          | 79.3                       |  |  |  |
|                            | 2     | Shaker 0.01 |               | 130.7                      |  |  |  |
| DPP-TiO <sub>2</sub> Plate |       |             |               |                            |  |  |  |
| Pre-mixed                  | 2     | Sonication  | 0.47          | 137.1                      |  |  |  |
|                            | 2     | Shaker      | 0.31          | 199.3                      |  |  |  |
| Non-Nano                   | 2     | Sonication  | 0.39          | 98.6                       |  |  |  |
|                            | 2     | Shaker      | 0.37          | 98.6                       |  |  |  |
| Nano                       | 2     | Sonication  | 0.61          | 87.9                       |  |  |  |
|                            | 2     | Shaker      | 0.37          | 122.1                      |  |  |  |

Table S5. Data of UV-vis spectroscopy and analytical ultracentrifuge for plates aged for 0 and 2 months



Table S6. Percentage variation of UV abs (at 280 nm) and fragment concentration (mg/m<sup>2</sup>) values of DPP +  $TiO_2$  plates respect to DPP plates alone. All plates were evaluated after 2 months artificial weathering.



Fig. S4. TEM pictures of the released fragments from (A, B) DPP\_premixed + TiO<sub>2</sub>, (C, D) DPP\_nano + TiO<sub>2</sub> and (E, F) DPP\_non nano + TiO<sub>2</sub> plates.

# **Calculation of Mass Release**

AUC data in metrics of mg/MJ was calculated multiplying "mg/m<sup>2</sup>" values per "surface area/UV energy". The equation employed is the following:

 $Mass release\left(\frac{mg}{MJ}\right) = \frac{fragment \ amount \ (mg)}{plate \ surface \ area \ (m^2)} * \frac{plate \ surface \ area \ (m^2)}{UV \ energy \ (MJ)}$