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Aggregation Kinetics
The aggregation kinetics of nano-TiO, can be quantitatively described by the
attachment efficiency a, which is defined as the ratio of the initial aggregation rate (k)
at the given electrolyte concentrations to the aggregation rate constant under the
diffusion-limited aggregation conditions (kg):'
1(61&(0)
kK N, dt )_,

a= = 1
PR (dRh (z)} M
N dt t—0,fast

0, fast

where N, is the initial TiO, concentration. R, (¢) is the hydrodynamic radius at
time ¢. The initial aggregation period is defined as the time period from the initial
aggregation (¢,, R,,) to the time R, ~1.4R,,. The critical coagulation concentration
(CCC) was calculated at the intersection of the reaction-limited and diffusion-limited

stability curves, which obtained by linear regression of a to electrolyte concentrations.

Determination of the percentage of the predominant facet
Based on the crystal model, the percentage of the exposed {101} facet and {001}
facet in TiO, nanocrystals can be calculated by the geometrical parameters of the as-

prepared crystals, which can be obtained from TEM images statistic.

{001}

Figure S1. The geometrical models of anatase TiO, crystals.

S2



The percentage of the {101} facet and {001} facet is calculated by the following

equation:

_a+bh:(a+b)l

S =
o 2 2sin 6
S001 =b’
le(%) = Lx 100%
8S101 + 2Som
Poo1(%) = AX 100%
8S101 + 2Som

The percentage of the predominant {101} facet and {001} facet in {101} TiO,

and {101} TiO, nanocrystals were calculated to be 93.1% and 74.7%, respectively.

DLVO calculation for TiO, nanocrystals interactions.

The interaction energy between the faceted TiO, nanocrystals was calculated
following the classic Derjaguin—Landau—Verwey—Overbeek (DLVO) theory, which
is equal to the sum of the electrostatic double layer repulsion @gp(4) and the van der
Waals attraction @ypw(#). Since {101} TiO, and {101} TiO, are both exposed with
plane facet, a plate-plate system model is adopted to calculate the interaction energy,

which can be calculated using the following equations:?-3

Dy ()= 206,00 T 41 o) (1)
A

)] h)=——1"121 2
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where ¢, and &, are permittivity of vacuum (8.854 x 1012 C V! m!) and relative
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dielectric constant of water (78.5), respectively. y is the surface potential (V). £ is
the separation distance between the faceted TiO, nanocrystal (m). 4,,, is the Hamaker

constant of anatase TiO, in water (3.5x102! J). k™' is the Debye length (nm) and

calculated by the following equation:

= g,&k,T )
2N, e’
where k, is the Boltzmann’s constant (1.38 x 1023 J K''). T is the absolute

temperature (K). N, Avogadro’s constant (6.02 x 10%* mol!). e is isolated unit

electron charge (1.602 x 10-1° C). I is the ionic strength (mol L1).
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Table S1. Physicochemical properties of the natural waters used in the stability

experiments.

Conductivity TDS? TOCP
Natural waters pH
(ns cm™) (mg L) (mg L)
Kunming Lake 245 8.28 138.0 4.56
A Lake located at Olympic
678 8.41 370.5 7.85
forest park
Wenyu River 683 7.97 350.5 4.97
Qinghe wastewater treatment
768 8.19 423.0 2.49
plants effluent

aTDS (total dissolved solids) was measured based on the weight of the residue after

evaporating water at 103 °C in a drying oven. PTOC (total organic carbon) was

analyzed on a O.I TOC Analyzer (College Station, TX, USA).
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Figure S2. XRD patterns of the prepared {101} TiO, and {001} TiO, nanocrystals.
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Figure S3. (a) XPS survey spectrum and (b) high-resolution F 1s XPS spectra of the

prepared {101} TiO, and {001} TiO,.
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Figure S4. Variation of the Zeta potentials of {101} TiO, and {001} TiO, nanocrystal

suspensions as a function of pH.
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Figure SS5. Representative aggregation profiles of (a,c) {101} TiO, and (b,d) {001}

TiO, nanocrystals as a function of (a,b) NaCl and (c,d) CaCl, concentration. TiO,

concentration was fixed at 20 mg L-! and pH was maintained at 5.4 = 0.1.
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Figure S6. DLVO interaction profiles (including the electrostatic double layer
repulsion (EDL), van der Waals attraction (VDW), and the net interaction energy) of

{101} TiO, and {001} TiO, nanocrystals under different NaCl or CaCl, concentration.
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Figure S7. DLVO interaction energy profiles of the faceted TiO, nanocrystals in the

presence of (a) NaCl and (b) CaCl, electrolyte.
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Figure S8. (a,b) Attachment efficiencies and (c,d) zeta potentials of TiO, (P25) as a

function of (a,c) NaCl and (b,d) CaCl, concentration in the presence of 5.0 mg L-!

SRHA, respectively. Measurements were taken right after adding salt ions into the

suspensions, and carried out at 25 °C, pH 5.4 + 0.1.
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Figure S9. Effect of SRHA concentration (0 ~ 10.0 mg L") on CCC of TiO; (P25) in
(a) NaCl and (b) CaCl, electrolytes at pH 5.4 = 0.1. *The data are adopted from our
previous report: H. Zhang, J. Sun, L.-H. Guo. Nanolmpact, 2016, 3-4: 75-80.
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Figure S10. FTIR spectra of pristine {101} TiO, and {001} TiO, nanocrystals, pure
SRHA, and the formed TiO,-SRHA complex.
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