ELECTRONIC SUPPLEMENTARY INFORMATION

Toxicity, bioaccumulation and biotransformation of Cu oxide nanoparticles in *Daphnia magna*

Joyce Ribeiro Santos-Rasera^a, Analder Sant'Anna Neto^b, Regina Teresa Rosim Monteiro^c, Cornelis A. M. van Gestel^d and Hudson Wallace Pereira de Carvalho^{a*}

^aUniversity of São Paulo, Center of Nuclear Energy in Agriculture (CENA), Laboratory of Nuclear Instrumentation (LIN), Piracicaba, São Paulo 13416000, Brazil

^bUniversity of São Paulo, Luiz de Queiroz College of Agriculture, Forest Science Department, Piracicaba, São Paulo 13416000, Brazil

^cUniversity of São Paulo, Center for Nuclear Energy in Agriculture (CENA), Laboratory of Ecotoxicology, Piracicaba, São Paulo 13416000, Brazil

^dDepartment of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands

* Corresponding author. Address: Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303, Piracicaba, São Paulo 13416000, Brazil

Tel.: +55 19 3425 4756. E-mail address: hudson@cena.usp.br (H.W.P Carvalho).

Contents

Acute and chronic dose-response assays	2
Calculation of average number of broods and reproduction	2
X-ray fluorescence microanalysis (μ-XRF) and X-ray absorption near the edge struc microanalysis (μ-XANES)	
Nanoparticle and dispersion characterization	4
Cu chemical speciation in solution based on Geochem simulation	7
Sensitivity assay	8
Literature reported LC ₅₀ values for nCuO and soluble counterparts	9
Survival decrease x concentration	9
Statistical graphs of average of reproduction and average of neonates	10
Chemical reactivity (H ₂ O ₂ decomposition)	10
Bibliographic references	11

Acute and chronic dose-response assays

Table S1 presents the concentrations used for the acute toxicity test with *Daphnia magna*. Table S2 shows the concentrations used for the chronic assays and the measured parameters such as mortality, number of broods, average reproduction and total number of neonates.

Table S1. Concentrations and pH of CuSO₄ and nCuO solutions used for determining dose-response curves for the acute toxicity to *Daphnia magna*.

Treatment	[] mg Cu L ⁻¹ / pH											
	[]	pН	[]	pН	[]	pН	[]	pН	[]	pН	[]	pН
CuSO ₄	0	7.4	0.04	7.4	0.08	7.4	0.16	7.4	0.24	7.3	0.32	7.3
nCuO 25	0	7.3	0.03	7.3	0066	7.3	0.1	7.3	0.13	7.3	0.16	7.3
nm			1									
nCuO 40	0	7.2	1.5	7.1	2.5	7.2	3.5	7.2	4.5	7.3	5	7.3
nm												
nCuO 80	0	7.2	0.32	7.1	1.6	7.1	3.2	7	10	7	16	7
nm												

Calculation of average number of broods and reproduction

The average number of broods and reproduction were calculated as shown below:

Average of broods = total number of broods/number of fertile daphnids;

Average of reproduction = average of (sum of n° neonates generated from a fertile daphnid/n° of broods from a fertile daphnid)

Treatment	pН	%	Average	Day of	Average	Total
(mg Cu L ⁻¹)		mortality	of broods	1 st	reproduction	number of
1	7.4	0	1.2	brood	25.0	neonates
Control	7.4	0	4.2	8 th	25.0	1019
nCuO 25	7.3	50	4.4	10^{th}	5.8	125
nm,						
(0.01248)				4.04		
nCuO n 25		40	4	10 th	7.29	175
nm,						
(0.00624)		• •		o.(1		
nCuO 25		30	3.71	8 th	9.61	272
nm,						
(0.00312)		10		Oth	11.0	100
nCuO 25	7.2	10	3.77	8 th	11.9	408
nm,						
(0.00156)	7.0	40	2.22	9 th	22.7	710
nCuO 40	7.2	40	3.33	9 ^m	23.7	719
nm, (1.90)		20	2 77	8 th	21.2	021
nCuO 40		30	3.77	8 th	21.2	831
nm, (1.17) nCuO 40		20	5.4	8 th	15.0	837
nm, (0.585)		20	3.4	ð	15.2	837
nCuO 40	7.2	10	4.3	8 th	19.9	877
nm, (0.292)	1.2	10	4.5	0	19.9	077
nCuO 80	7.2	30	4.44	8 th	15.7	678
nm, (1.86)	1.2	50	4.44	0	13.7	078
nCuO 80		30	4.44	8 th	20.1	790
nm, (1.13)		50	7.77	0	20.1	170
nCuO 80		30	4.70	8th	20.1	918
nm, (0.565)		20	, 0	0.111		210
nCuO 80	7.3	10	4.4	8 th	20.8	955
nm, (0.282)		-		-		
CuSO ₄	7.4	80	4.50	10 th	9.42	77
(0.00128)		-				
CuSO ₄		40	4.33	9 th	6.02	157
(0.00064)						
CuSO ₄		30	3.66	8 th	9.19	206
(0.00032)						
CuSO ₄	7.4	10	5.11	8 th	10.6	474
(0.00016)						

Table S2. Mortality, number of broods, average and cumulative reproduction of *Daphnia* magna exposed for 21 days to different nCuO and $CuSO_4$ concentrations. The control treatment corresponds to the feed solution.

X-ray fluorescence microanalysis (µ-XRF) and X-ray absorption near the edge structure microanalysis (µ-XANES)

Fig. S1 (A) presents the setup used for the μ -XRF measurements in the benchtop equipment and (B) shows the sample holder for the μ -XANES. For μ -XANES, it was necessary to cover daphnids with UltraleneTM to avoid dehydration. This film is made of carbon and its composition and thickness do not interfere with the analysis.

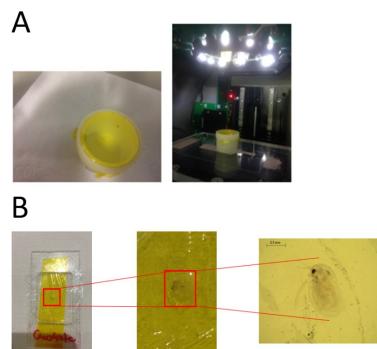


Fig. S1. (A) *Daphnia magna* on top of a KaptonTM (polyamide) film prepared for μ -XRF analysis, (B) Scheme of a sample of *D. magna* covered by a 4 μ m UltraleneTM (polyethylene) film for XANES.

Nanoparticle and dispersion characterization

Fig. S2 shows the crystal structure of the differently sized nCuO. The graph was determined by Cu-K α radiation X-ray diffraction (XRD) using a PM 1877 diffractometer (Philips, Netherlands).

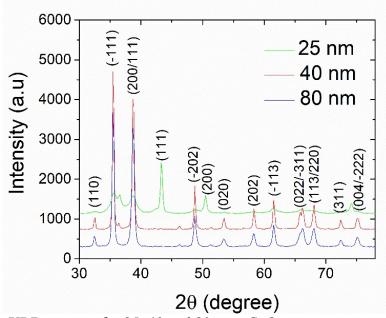


Fig. S2. XRD patterns for 25, 40 and 80 nm nCuO.

Micrograph images for nCuO dispersions were prepared to determine particle size and shape (Fig. S3). nCuO aqueous dispersions were prepared in deionized water and isopropanol (1:1) at 10 mg Cu L⁻¹. Micrograph images were recorded using a JEM-1011 transmission electronic microscope (Carl Zeiss AG, Germany) operating at 60 KV with the scales of electromicrographs printed directly.

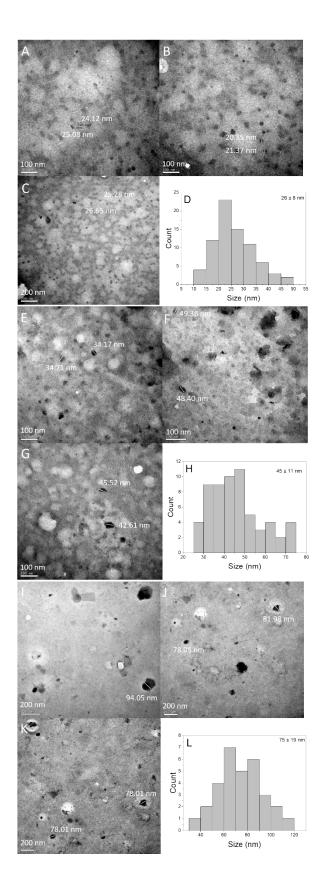


Fig. S3. Characterization of dispersions of nCuO at 10 mg Cu L⁻¹ (50% deionized water and 50 % isopropanol) of (A, B, C) 25 nm, (E, F, G) 40 nm and (I, J, K) 80 nm by transmission electronic microscopy (TEM). (D, H, L) histograms showing the size distribution of nanoparticle counts for nCuO 25 nm, 40 nm and 80 nm, respectively.

Dissolution

We dripped 15 μ L of supernatant (see the Nanoparticle and dispersion characterization section of the main manuscript) of nCuO dispersions and CuSO₄ solutions at 100 and 1000 Cu L⁻¹ in a 6.3 window cuvette assembled with a five micrometer thick polypropylene film and dried the samples at 60°C in a laboratory oven. This procedure was repeated twice and samples were measured in triplicate using a rhodium X-ray tube operating at 50 kV. Spectra were acquired by a Si (Li) detector during 200 s. The quantification was made using external standard calibration and Ga as the internal standard, and using the formula shown below the LOQ was calculated. For the soluble concentration of Cu in deionized water and culture medium, the LOQ was 0.18 and 0.11 mg L⁻¹, respectively. Measurements were performed in triplicate in deionized water and culture medium¹.

$$LOQ = \frac{10 \sqrt{BG}(cps)}{time (s) \ x \ electric \ current \ (\mu A)}$$

For zeta potential and dynamic light scattering (DLS) analysis, dispersions of nCuO at 100 mg Cu L⁻¹ were prepared as describe for TEM analysis. The measurements were carried out using a Zetasizer Nano (Malvern Instruments, U.K) and the data are presented in Table 1 of the main manuscript.

Cu chemical speciation in solution based on Geochem simulation

Using the Geochem software it was possible to simulate the reactions between main solutions of the culture medium of *D. magna*, according ABNT 12713 (2016), with CuSO₄. The software works with the properties of the daphnids culture medium, which had a pH of 7-7.5.

In addition to CuSO₄, the following salt concentrations were used as input for the test solutions: KCl: $5.8 \times 10^{-3} \text{ g L}^{-1}$; MgSO₄.7H₂O: 0.1233 g L⁻¹; CaCl₂.2H₂O: 0.2940 g L⁻¹; K₂HPO₄: $1.84 \times 10^{-4} \text{ g L}^{-1}$; H₃BO₃: $2.85 \times 10^{-3} \text{ g L}^{-1}$; Na₂MoO₄: $6.3 \times 10^{-5} \text{ g L}^{-1}$; MnCl₂.4H₂O: $7.21 \times 10^{-4} \text{ g L}^{-1}$; SrCl₂.6H₂O: $3.04 \times 10^{-4} \text{ g L}^{-1}$; LiCl: $6.12 \times 10^{-4} \text{ g L}^{-1}$; RbCl: $1.4 \times 10^{-4} \text{ g L}^{-1}$; CuCl₂.H₂O: $3.35 \times 10^{-5} \text{ g L}^{-1}$; ZnCl₂: $2.6 \times 10^{-5} \text{ g L}^{-1}$; Fe(SO₄).7H₂O: $9.95 \times 10^{-4} \text{ g L}^{-1}$; KH₂PO₄: $1.43 \times 10^{-5} \text{ g L}^{-1}$; Na₂EDTA.2H₂O: $2.5 \times 10^{-3} \text{ g L}^{-1}$.

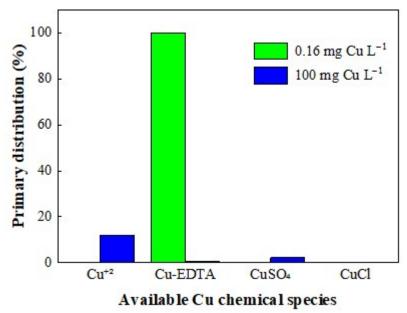


Fig. S4. Cu chemical interactions in the daphnid culture medium and after adding different concentrations of CuSO₄.

For the 0.16 mg Cu L⁻¹ (LC₅₀ CuSO₄), pH 7.4: 0.02% in complexed with OH⁻ 99.98% complexed with EDTA

For 100 mg Cu L⁻¹ solution of CuSO₄ at pH 5.8: 12.04% as free metal 2.25% complexed with SO_4^{2-} 85.02% in solid form with OH⁻ 0.19% complexed with OH⁻ 0.08% complexed with Cl⁻ 0.42% complexed with EDTA

Sensitivity assay

Sensitivity assays were performed with the reference substance NaCl before acute and chronic assays. Neonates (\leq 24 hold) were exposed to concentrations of 1, 3, 5 and 7 g L⁻¹ with five neonates (\leq 24 hold) per replicate and the resulting dose-response curve for the effect of NaCl on daphnid survival is shown in Fig. S5.

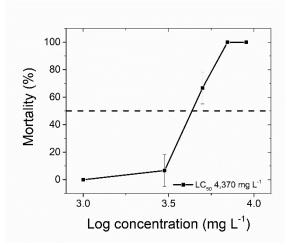


Fig. S5. Dose-response curve for the acute toxicity of the reference chemical NaCl to *Daphnia magna*.

Literature reported LC₅₀ values for nCuO and soluble counterparts

Table S3 shows the LC_{50} values found by other research groups for the acute toxicity of CuO nanoparticles to *D. magna*.

Reference	nCuO (nm)	LC ₅₀ nCuO (mg Cu L ⁻¹)	LC ₅₀ (mg Cu L ⁻¹)
2	< 50	4.0	$CuCL_2 - 0.8$
3	30	4.0	-
4	30	3.2	$CuSO_4 - 0.17$
5	200-300	22	$CuSO_4 - 0.10$
6	< 50	2.79	$CuCl_2 - LC_{50}$ not
			report
7	30-50	1.09	$Cu(NO_3)_2 0.02$
8	30-50	0.98	$CuSO_4 - 0.04$
9	6	0.08	-
10	50	0.102	$Cu(NO_3)_2 - 0.02$
11	78	0.79	-
12	< 100	0.63	-
In this study		0.05	CuSO ₄ - 0.16
In this study		2.34	same as above
In this study		2.26	same as above

Table S3. LC_{50} values found in the present study and in the literature for *Daphnia magna* exposed for 48 hours to the CuO nanoparticles, CuSO₄ and other Cu salts. For CuO nanoparticles the LC_{50} varied from 0.05 to 4.0 mg Cu L⁻¹, whereas for positive controls (soluble Cu forms) it ranged from 0.02 to 0.80 mg Cu L⁻¹.

Survival decrease x concentration

Fig. S6 shows the daphnid survival decrease as a function of concentration for 80 nm and 40 nm nCuO. The data used here is the same as shown in Figure 3A.

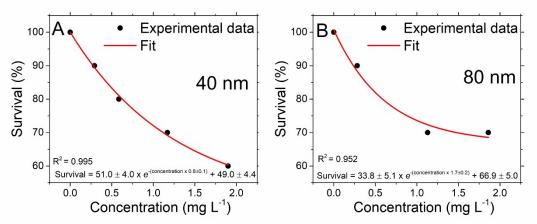


Fig. S6. Effect of (A) 40 nm and (B) 80 nm nCuO on the survival of *Daphnia magna* in chronic tests.

Statistical graphs of average of reproduction and average of neonates

Fig. S7 shows the results of the statistical analysis of (A) the average reproduction and (B) the average number of neonates. The lowest average reproduction was obtained for CuSO₄ and 25 nm nCuO, especially at 0.00064 mg Cu L⁻¹ and 0.01248 mg Cu L⁻¹, respectively. Analogous to this, the lowest average number of neonates was found for CuSO₄ and 25 nm nCuO.

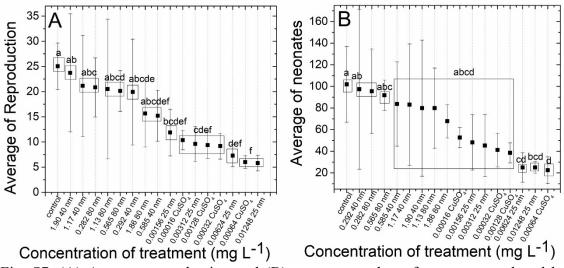


Fig. S7. (A) Average reproduction and (B) average number of neonates produced by *Daphnia magna* in 21-day chronic toxicity assays. Values followed with the same indices do not differ significantly according to the Tukey test (p < 0.05).

Chemical reactivity (H₂O₂ decomposition)

Fig. S8 shows the O_2 production curves from H_2O_2 decomposition in function of time at 1,000 mg Cu L⁻¹ in (A) deionized water, (B) culture medium and (C) at the concentration corresponding with the LC_{50} for effects on the daphnids in culture medium.

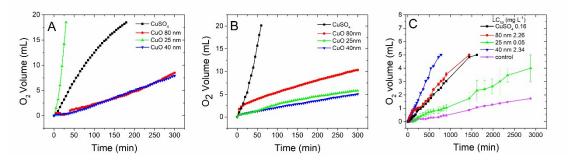


Fig. S8. Oxygen volume generated during the decomposition of H_2O_2 in the presence of nCuO and CuSO₄ at 1,000 mg Cu L⁻¹ in (A) deionized water, (B) daphnid culture medium and (C) at concentrations in daphnid culture medium corresponding with the LC₅₀s for the effects of these compounds on the survival of *Daphnia magna*.

Bibliographic references

- Associação Brasileira de Normas Técnicas, Toxicidade aguda Método de ensaio com *Daphnia* spp (Crustacea, Cladocera), ABNT, 2016, **12713**, 1–33.
- 2 S. N. Sørensen, H.-C. Holten Lützhøft, R. Rasmussen, A. Baun, Acute and chronic effects from pulse exposure of *D. magna* to silver and copper oxide nanoparticles, *Aquat. Toxicol.*, 2016, **180**, 209–217.
- M. Heinlaan, A. Kahru, K. Kasemets, B. Arbeille, G. Prensier and H. C. Dubourguier, Changes in the *Daphnia magna* midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study, *Water Res.*, 2011, 45, 179–190.
- M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier and A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO₂ to bacteria *Vibrio fischeri* and crustaceans *Daphnia magna* and *Thamnocephalus platyurus*, *Chemosphere*, 2008, **71**, 1308–1316.
- 5 A. L. de O. F. Rossetto, S. P. Melegari, L. C. Ouriques and W. G. Matias, Comparative evaluation of acute and chronic toxicities of CuO nanoparticles and bulk using *Daphnia magna* and *Vibrio fischeri*, *Sci. Total Environ.*, 2014, **490**, 807–814.
- H. J. Jo, J. W. Choi, S. H. Lee and S. W. Hong, Acute toxicity of Ag and CuO nanoparticle suspensions against *Daphnia magna*: The importance of their dissolved fraction varying with preparation methods, *J. Hazard. Mater.*, 2012, 227–228, 301–308.

- 7 S. Kim, P. Samanta, J. Yoo, W. K. Kim and J. Jung, Time-Dependent Toxicity Responses in *Daphnia magna* Exposed to CuO and ZnO Nanoparticles, *Bull. Environ. Contam. Toxicol.*, 2017, **98**, 502–507.
- J. Seo, S. Kim, S. Choi, D. Kwon, T. H. Yoon, W. K. Kim, J. W. Park and J. Jung, Effects of physiochemical properties of test media on nanoparticle toxicity to *Daphnia magna* straus, *Bull. Environ. Contam. Toxicol.*, 2014, **93**, 257–262.
- 9 A. Thit, K. Huggins, H. Selck and A. Baun, Acute toxicity of copper oxide nanoparticles to *Daphnia magna* under different test conditions, *Toxicol. Environ. Chem.*, 2016, **2248**, 1–15.
- 10 S. Saif, A. Tahir, T. Asim and Y. Chen, Plant mediated green synthesis of CuO nanoparticles: Comparison of toxicity of engineered and plant mediated CuO nanoparticles towards *Daphnia magna*, *Nanomaterials*, 2016, 6, 205, 1-15.
- L. Song, M. G. Vijver, G. R. de Snoo and W. J. G. M. Peijnenburg, Assessing toxicity of copper nanoparticles across five cladoceran species, *Environ. Toxicol. Chem.*, 2015, 34, 1863–1869.
- 12 G. Lu, H. Yang, J. Xia, Y. Zong and J. Liu, Toxicity of Cu and Cr Nanoparticles to *Daphnia magna, Water. Air. Soil Pollut.*, 2017, **228**, 1-13.