Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

Supplementary Information (SI)

for

Double metal-free polymer reactive sites for the efficient degradation of diclofenac by visible light-driven oxygen reduction to superoxide radical and hydrogen peroxide

Qianxin Zhang^a, Cuiwen Tan^a, Xiaoshan Zheng^a, Ping Chen^{a,b}, Meihui Zhuo^a, Tiansheng Chen^a, Zhijie Xie^a, Fengliang Wang^a, Haijin Liu^c, Xiangdan Zhang^a, Yang Liu^d, Wenying Lv^{a*}, Guoguang Liu^{a*}

^aSchool of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou,

510006, China

^bSchool of Environment, Tsinghua University, Beijing, 100084, China

^c Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China

^dFaculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

* **Corresponding Author**: Wenying Lv, E-mail: <u>lvwy612@163.com</u>, Telephone: +86-20-39322547, Fax: +86-13538982812

Guoguang Liu, E-mail: liugg615@163.com, Telephone: +86-20-39322547, Fax: +86-20-39322548;

Summary:

Number of pages: 20

Number of tables: 3

Number of figures: 13

Text

Text S1. Photoanode preparation: Indium tin oxide (ITO) glass was initially obtained through sequential rinsing with acetone, distilled water, and ethanol in an ultrasonic cleaner for 30 min. Subsequently, 1.0 mg of the photocatalyst was well dispersed in 0.5 ml ethanol with 10 μ l Nafion under ultrasonic treatment for 30 min. Afterward, the above suspension was deposited dropwise onto an ITO glass surface with uniformly exposed area of 1×1 cm². Following drying overnight in an oven, the electrodes were sintered at 60°C in N₂ for 2 h to improve adhesion.

Text S2. Determination of concentration of PPCPs. The concentration of PPCPs was analyzed via Waters alliance e2695-2998 high performance liquid chromatography (HPLC, USA), which was equipped with a C18 reversed-phase column (XBridge, 4.6×250 mm, 5 µm).

Text S3. Intermediates Identification by HRLC-MS-MS. The photocatalytic degradation intermediates of DCF were identified by HRLC-MS-MS (Thermo Scientific Ultimate 3000 RSLC and Q Exactive Orbitrap). Separation was accomplished using an Hypersil GOLD C18 (100 x 2.1 mm, 1.9 μ m) with column temperature 40 °C. Elution was performed at a flow rate of 0.3 mL/min with water that contained 0.1 % (v/v) formic acid as eluent A, and methanol as eluent B. Mass spectral analysis was conducted in negative mode.

Time (min)	%A	%B
0	98	2
2	98	2
16	5	95
18	5	95
18.1	98	2
20	98	2

Tab. S1 Mobile phase composition and gradient elution table

Tab. S2 Mass spectrum scanning parameters		
parameters	value	
Sheath gas flow rate	40	
Aux gas flow rate	10	
Sweep gas flow rate	0	
Spray voltage (l KV)	+3.5, -2.5	
Capillary temp. (°C)	320	
Aux gas heater temp. (°C)	350	

Tab. S3 Mass spectrum scanning parameters		
Mass spectrum scanning parameters	value	
Soon mode	+, -	
Scan mode	Full MS-ddMS2	
Full MS scan range	150-1000 m/z	
	Full MS: 70,000 FWHM	
Resolution	MS/MS: 17,500 FWHM	
Isolation width	1.0 m/z	
NCE (Stepped NCE)	40 (50%)	

1.00µm

Fig.S1 SEM of g- C_3N_4 and OCN and CDs/OCN

SU8220 15.0kV 8.2mm x30.0k SE(UL)

Fig. S2 The Up-conversion fluorescence spectrum of CDs

Fig. S3 The FTIR spectrum of CDs

Fig.S4 O_2 -TPD of g- C_3N_4 and OCN

Fig, S5 MS/MS fragmentation analyses of the observed transformation products of DCF.

Fig. S6. The atomic model of DCF

Fig. S7. The Mott–Schottky plots of the catalysts¹

Fig.S8. The Kubelka–Munk formula of the as-samples

Fig. S9. Band structure alignments of g- C_3N_4 and OCN

Fig. S10. Interfacial plots of main orbitals for (a) $g-C_3N_4$, (b) OCN models, calculated at the DFT level (B3LYP/6- 311G (d, p)).

Fig. S11. The Raman spectra of the OCN(a) and CDs/OCN(b) before and after the reaction

Fig.S12 The mechanism of OCN facilitated photocatalytic O_2 reduction to synthesize H_2O_2 .

Fig. S13. The N₂ adsorption-desorption isotherms

Reference

 Q. X. Zhang, P. Chen, C. W. Tan, T. S. Chen, M. H. Zhuo, Z. J. Xie, F. L. Wang, H. J. Liu, Z. W. Cai, G. G. Liu and W. Y. Lv, A photocatalytic degradation strategy of PPCPs by a heptazinebased CN organic polymer (OCN) under visible light, *Environ Sci-Nano*, 2018, 5, 2325-2336.