Support information

Simultaneous Removal of Phosphates and Dyes by Al-doped Iron Oxides Decorated

MgAl Layered Double Hydroxide Nanoflakes

Shu Cheng, ^a Luhua Shao, ^a Jianhong Ma, ^{bc} Xinnian Xia, ^{*a} Yutang Liu, ^{bc} Zhenfei Yang,

^a Cong Yang, ^a Sijian Li^a

^a College of Chemistry and Chemical Engineering, Hunan University, Lushan South

Road, Yuelu District, Changsha 410082, P. R. China

^b College of Environmental Science and Engineering, Hunan University, Lushan South

Road, Yuelu District, Changsha 410082, P. R. China

^c Key Laboratory of Environmental Biology and Pollution Control (Hunan University),

Ministry of Education, Lushan South Road, Yuelu District, Changsha 410082, P.R.

China

Corresponding author

Xinnian Xia

College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, P. R. China

E-mail address: xnxia@hnu.edu.cn (X. N Xia)

Adsorption kinetics models

The pseudo-first-order, pseudo-second-order models were used to describe the experimental adsorption kinetic data. The mathematical equations of the pseudo-first-order model (Eq. S1), pseudo-second-order model (Eq. S2) are expressed as follows:

$$\log(q_{\rm e} - q_{\rm t}) = \log q_{\rm e} - \frac{k_{\rm i} t}{2.303}$$
(S1)

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(S2)

where k_1 (min⁻¹) and k_2 (g mg⁻¹ min⁻¹) are the pseudo-first order and pseudo-secondorder rate constants, respectively.

Adsorption isotherms and thermodynamics

The linear forms of Langmuir (Eq. S3), Freundlich (Eq. S4) and Langmuir-Freundlich (Eq. S5) isotherm models are respectively expressed as follows.

$$q_e = \frac{q_{\max} K_L C_e}{1 + K_L C_e}$$
(S3)

$$q_e = \kappa_F C_e^{1/n_F} \tag{S4}$$

$$q_{e} = \frac{K_{LF} C_{e}^{1/n}}{1 + a_{LF} C_{e}^{1/n}}$$
(S5)

where q_e (mg/g) is the equilibrium adsorption capacity, q_m (mg/g) is the maximum adsorption capacity, K_L (L/mg), K_F (mg^{1-1/n}L^{1/n}g⁻¹), K_{LF} (mg^{1-1/nF}L^{1/nF}g⁻¹) and a_{LF} (mg^{-1/n}L^{1/n}) are the corresponding adsorption equilibrium constants, n_F represents the degree of adsorption and n is heterogeneity parameter. The values of ΔG^0 , ΔH^0 and ΔS^0 can be calculated from the following equation(Eq. S6, S7).

$$\Delta G^{0} = -RT \ln K^{0}$$
 (S6)

$$\ln K^{0} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$
(S7)

where *R* (8.314 J mol⁻¹ K⁻¹) is the ideal gas constant, *T* is the temperature in kelvin. K^0 is the equilibrium constant, which is calculated from plotting of ln*K*d vs C_e , at the C_e is value of zero, the intercept is ln K^0 .

Simultaneous removal studies

The values of removal capacities ratio(Rq) can be calculated as follows(Eq. S8):

$$R_{q} = q_{b,i} / q_{m,i}$$
 (S8)

where $q_{b,i}$ is the removal capacities of pollutant i in the binary system and $q_{m,i}$ is the removal capacities of pollutant i in the mono-component system under the same conditions. It has been reported that (i) if $R_q > 1$, the existence of pollutant j can promote the removal efficiency of pollutant i; (ii) if $R_q = 1$, the existence of pollutant j has no effect on the removal efficiency of pollutant i; (iii) if $R_q < 1$, the existence of pollutant j can inhibit the removal efficiency of pollutant i.

Desorption efficiencies

The desorption efficiency (R_D) can be calculated from the equation as follows(Eq. S9):

$$R_{D}(\%) = \frac{C_{d} \times V_{d}}{q_{e} \times m} \times 100$$
 (S9)

where C_d is the desorbed phosphate concentration (mg P/L), V_d is the volume of solution (L) during desorption processes, q_e is the adsorbed amount before desorption (mg P/g) and m is the mass of the adsorbent (g).

Fig.S1. UV-Vis spectra of the individual and mixed solution before and after adding molybdenum-blue and ascorbic acid, C_p initial = 10 mg/L, C_{MO} initial = C_{CR} initial = 200 mg/L, dilution before UV test.

Fig. S2. SEM images of free Al-Fe $_2O_3$ (A), 0.3Al-Fe $_2O_3$ /LDH (B), 0.5Al-Fe $_2O_3$ /LDH (C),

0.8Al-Fe $_2O_3$ /LDH (D), 1.5Al-Fe $_2O_3$ /LDH (E) and 2Al-Fe $_2O_3$ /LDH (F)

Fig.S3. XRD patterns of Al-Fe₂O₃/LDH assemblies.

Fig.S4. Nitrogen removal/desorption analysis (A) and the pore size distribution (PSD) curves of LDH, 0.5AI-Fe₂O₃/LDH, 1AI-Fe₂O₃/LDH ,and 2AI-Fe₂O₃/LDH.

Units : Å

Fig.S5. The molecular size of phosphates (a), MO(b) and CR(c).

Fig.S6. Zeta potentials of LDH and Al-Fe₂O₃/LDH assemblies as a function of pH.

Fig.S7. Removal capacity of MO (A) and CR (B) on 1AI-Fe₂O₃/LDH, LDH, Fe₂O₃ and AI-Fe₂O₃ assemblies at pH = 5.5 \pm 0.1, C_{MO} initial =C_{CR} initial = 200 mg/L, 298K and m/V=0.2 g/L.

Fig.S8. Effect of initial pH on the removal of phosphates, MO and CR on the 1Al-Fe₂O₃/LDH ,C_P initial =10 mg/L, C_{MO} initial =C_{CR} initial = 200 mg/L, 298K and m/V=0.2 g/L (A) zeta potentials of 1Al-Fe₂O₃/LDH as a function of pH (B) the Mg, Al and Fe leaching at varying pH of 1Al-Fe₂O₃/LDH.

Fig.S9. The uniform dispersion before adsorption and the naturally settlement of 1Al-Fe₂O₃/LDH after adsorption.

Fig.S10. Effects of coexisting ions on the phosphates adsorption capacity of 1Al-Fe₂O₃/LDH at different molar concentration, at 298K,

m/V = 0.2 g/L, and C_P initial = 10 mg/L.

75-

Fig.S11. The adsorption kinetics of phosphates (A), CR (B) and MO (C), at 298K, m/V = 0.2 g/L, and pH = 3 for phosphates and 5.5 for CR

and MO.

Fig.S12. XRD spectra of 1AI-Fe₂O₃/LDH before and after phosphates, MO and CR adsorption.

Fig.S13. FT-IR spectra of 1AI-Fe₂O₃/LDH before and after phosphates, MO and phosphates-MO (A); CR and phosphates-CR (B) adsorption; a magnification FT-IR spectra of A (C).

Fig.S14. Survey scan(A) and Fe2p (B) Mg1S (C) XPS spectra of 1Al-Fe₂O₃/LDH before and after adsorption of phosphates, MO and CR.

Fig.S15. Desorption efficiency at different NaOH concentrations(A) and adsorption-desorption cycles (B), at 298K, C_p initial = 10 mg/L

and desorption time = 24 h.

Table S1. The actual ratio between Al and Fe in Al doped iron oxides materials.

	Fe ₂ O ₃	0.2Al-Fe ₂ O ₃	0.4Al-Fe ₂ O ₃	0.6Al-Fe ₂ O ₃	1AI-Fe ₂ O ₃
Feeding ratio (Al:Fe)	0:1	0.2:1	0.4:1	0.6:1	1:1
Actual ratio (Al:Fe)	0:1	0.226:1	0.400:1	0.640:1	0.970:1

 Table S2.
 Comparison of fitted kinetic model rate constants of phosphates and dyes (MO and CR) adsorption by different adsorbents.

Pollutants	Materials	Concentration (mg L ⁻¹)	pseudo-second (g mg ⁻¹ min ⁻¹)	pseudo-second-order rate constant (g mg ⁻¹ min ⁻¹)			
Phosphates	1Al-Fe ₂ O ₃ /LDH	10, 20 and 40	0.29608	0.26804	0.16299	This work	
	MALZ	1, 5 and 10	0.048	0.023	0.013	1	
	CaT-Z	10 and 100	0.1158	0.0080		2	
	Mg/Al-LDHs biochar	50	0.0129			3	
	ACF-ZrFe	10, 20 and 30	0.00153	0.00054	0.00036	4	
	La-UiO-66	800	3.6 E-04			5	
мо	1Al-Fe ₂ O ₃ /LDH	50,200 and 400	0.25563	0.00279	0.00223	This work	
	MPL	100	1E-04			6	
	G-LDO	30	0.0015			7	
CR	1Al-Fe ₂ O ₃ /LDH	50,200 and 400	0.28714	0.00662	0.00464	This work	
	MPL	100	1E-04			6	
	Fe ₃ O ₄ /MgAlLDH	20	0.0187			8	

Table S3. Kinetic parameters for phosphate, CR and MO adsorption on 1AI-Fe₂O₃/LDH at different initial concentrations.

Adsorbates	C ₀ (mg/L)	Pseudo first-o	Pseudo first-order model				Pseudo second-order model			
		q_e (mg/g)	<i>k</i> ₁ (min⁻¹)	R ²	RMSE	q_e (mg/g)	k₂ (g mg⁻¹min⁻¹)	R ²	RMSE	
phosphates	10	41.45467	3.64977	0.99548	0.83662	41.79279	0.29608	0.99765	0.60302	
	20	48.15921	4.58835	0.97705	2.20772	51.65893	0.26804	0.99175	1.74545	
	40	61.87574	3.7228	0.9745	2.99095	62.5786	0.16299	0.98467	2.31911	
CR	50	242.87421	12.25561	0.99961	1.45053	243.01844	0.28714	0.99963	1.4082	
	200	701.73305	2.16465	0.98854	21.54827	710.92586	0.00662	0.99001	15.96198	
	400	894.476	2.10244	0.98686	27.28568	906.63197	0.00464	0.99018	20.98726	
MO	50	97.27691	7.88806	0.99679	1.83949	96.8847	0.25563	0.99763	1.58313	
	200	289.73277	0.63612	0.92815	28.57096	300.91474	0.00279	0.97027	18.37734	
	400	385.0246	0.84609	0.95186	29.84901	394.56444	0.00223	0.97703	20.61977	

Table S4. Adsorption equilibrium models and parameters for removal of P,CR and MO.

Parameters		Р			CR			MO	
	288K	298K	308K	288K	298K	308K	288K	298K	308K
Experiment result (mg/g)	63.22169	72.30443	78.30196	1027.7825	1042.55768	1062.5173	349.88632	417.85857	541.19365
Langmuir									
$q_{\rm m}$ (mg/g)	59.30695	66.20219	71.27827	919.05663	920.19867	921.66961	479.34932	577.42028	849.98858
K _L (L/mg)	1.14346	1.30388	1.58778	0.08388	0.11902	0.29188	7.58015E-03	8.41236E-03	6.15394E-03
R ²	0.9266	0.91092	0.92474	0.9052	0.91138	0.91793	0.97554	0.98541	0.98697
Freundlich									
K _F	31.41602	35.49254	39.60522	195.2576	223.53304	299.11051	17.87385	23.24246	20.76887
$(mg^{1-1/n}L^{1/n}g^{-1})$									
1/n	0.20489	0.20819	0.19485	0.28971	0.26977	0.22418	0.51721	0.51116	0.58290
R ²	0.94816	0.95064	0.95630	0.94634	0.93886	0.92394	0.95132	0.94616	0.96405
Langmuir-									

Freundlich

K _{LF}	50.46097	56.84887	70.83681	169.63446	198.96806	321.44441	3.33311	2.40970	3.33179
$(mg^{1-1/n}L^{1/n}g^{-1})$									
a _{LF}	0.64426	0.61089	0.75561	0.11009	0.14592	0.27209	0.0071	0.00475	0.00442
(mg ^{-1/n} L ^{1/n})									
1/n	0.49881	0.46122	0.47143	0.48269	0.50525	0.52322	1.02323	1.18837	1.12047
R ²	0.97220	0.96681	0.97686	0.94931	0.94728	0.94784	0.96948	0.98497	0.98492

Table S5. Comparison of fitted equilibrium model capacity of phosphates and dyes (MO and CR) adsorption by different adsorbents.

Materials	Phosphates (mg g-1)	MO (mg g-1)	CR (mg g-1)	Reference
1Al-Fe2O3/LDH	93.06	577.42	1363.54	This work
MPL		624.89	584.56	6
Ni/Al LDH decorated PAB		412.8		9
NMA-LDOs			1250	10
MALZ	80.8			1
MFC@La(OH) ₃	45.45			11

Table S6. Values of thermodynamic parameters for P, CR and MO adsorption.

Temperature(K)	Р			MO			CR		
	ΔG^0 (kJ/mol)	ΔS^0	∆ <i>H</i> ⁰ (kJ/mol)	∆G ⁰ (kJ/mol)	ΔS^0	∆ <i>H</i> ⁰ (kJ/mol)	∆G ⁰ (kJ/mol)	ΔS^0	∆ <i>H</i> ⁰ (kJ/mol)
		(J/(mol K))			(J/(mol K))			(J/(mol K))	
288	-9.485	130.610	28.158	-3.559	53.762	11.927	-10.550	128.454	26.453
298	-10.703			-4.088			-11.808		
308	-12.102			-4.635			-12.121		

Table S7. Adsorption equilibrium models and parameters for removal of P with different CR concentrations.

Parameters	P+0CR	P+50CR	P+100CR	P+200CR
	298K	298K	298K	298K
Experiment result (mg/g)	72.30443	50.25153	41.79794	37.32985
Langmuir				
$q_{\rm m}$ (mg/g)	66.20219	50.00320	39.92727	36.54688
K _L (L/mg)	1.30388	0.69553	0.54643	0.53266
R ²	0.91092	0.8366	0.77626	0.78197
Freundlich				
$K_{\rm F} ({\rm mg^{1-1/n}L^{1/n}g^{-1}})$	35.49254	24.14363	19.07382	17.54690
1/n	0.20819	0.22588	0.23126	0.21665
R ²	0.95064	0.98098	0.98284	0.98918
Langmuir-Freundlich				
K_{LF} (mg ^{1-1/n} L ^{1/n} g ⁻¹)	56.84887	27.61392	19.19071	17.75060
$a_{LF} (mg^{-1/n}L^{1/n})$	0.61089	0.16038	0.00748	0.01311
1/n	0.46122	0.28952	0.23411	0.22136
R ²	0.96681	0.97887	0.9791	0.98671

Table S8. Adsorption equilibrium models and parameters for removal of P with different MO concentrations.

Parameters	P+0MO	P+50MO	P+100MO	P+200MO	
	298K	298K	298K	298K	
Experiment result (mg/g)	72.30443	63.44245	61.31592	59.79548	
Langmuir					
$q_{\rm m}$ (mg/g)	66.20219	61.15062	59.75222	59.58753	
<i>K</i> _L (L/mg)	1.30388	0.75369	0.61536	0.45025	
R ²	0.91092	0.95281	0.97809	0.97601	
Freundlich					
$K_{\rm F} ({\rm mg^{1-1/n}L^{1/n}g^{-1}})$	35.49254	30.63096	28.3496	25.66921	
1/n	0.20819	0.2093	0.22097	0.2402	
R ²	0.95064	0.87916	0.91043	0.90391	
Langmuir-Freundlich					
$K_{LF} (mg^{1-1/n}L^{1/n}g^{-1})$	56.84888	46.19470	38.39131	28.41539	
$a_{LF} (mg^{-1/n}L^{1/n})$	0.61089	0.72344	0.59657	0.45912	
1/n	0.46122	0.85	0.7862	0.88679	
R ²	0.96681	0.94644	0.97422	0.97337	

Table S9. Adsorption equilibrium models and parameters for removal of CR with

Parameters	CR+0P	CR+10P	CR+20P
	298K	298K	298K
Experiment result (mg/g)	1042.55768	994.92331	967.04371
Langmuir			
$q_{\rm m}$ (mg/g)	920.19867	963.37159	905.79401
<i>K</i> _L (L/mg)	0.11902	0.04046	0.04535
R ²	0.91138	0.94914	0.92867
Freundlich			
$K_{\rm F}$ (mg ^{1-1/n} L ^{1/n} g ⁻¹)	223.53304	144.95529	145.45645
1/n	0.26977	0.33706	0.32713
R ²	0.93886	0.96000	0.94801
Langmuir-Freundlich			
K_{LF} (mg ^{1-1/n} L ^{1/n} g ⁻¹)	198.96806	98.75088	107.08916
$a_{\rm LF} ({\rm mg}^{-1/n} {\rm L}^{1/n})$	0.14592	0.07080	0.07644
1/n	0.50525	0.59430	0.55467
R ²	0.94728	0.96927	0.95085

different P concentrations.

Table S10. Adsorption equilibrium models and parameters for removal of MO with

different P concentrations.

Parameters	MO+0P	MO+10P	MO+20P
	298K	298K	298K
Experiment result (mg/g)	417.85857	405.31123	393.68057
Langmuir			
$q_{\rm m}$ (mg/g)	577.42028	686.77207	735.43108
K _L (L/mg)	8.41236E-03	4.62123E-03	3.67414E-03
R ²	0.98541	0.97752	0.98103
Freundlich			
$K_{\rm F}$ (mg ^{1-1/n} L ^{1/n} g ⁻¹)	23.24246	10.78785	8.30451
1/n	0.51116	0.63792	0.67677
R ²	0.94616	0.94137	0.95340
Langmuir-Freundlich			
K_{LF} (mg ^{1-1/n} L ^{1/n} g ⁻¹)	2.40970	0.34738	0.31805
$a_{\text{LF}} (\text{mg}^{-1/n} L^{1/n})$	0.00475	7.58030E-04	6.79245E-04
1/n	1.18837	1.56030	1.53010
R ²	0.98497	0.99311	0.99342

Table S11. Binding energies of elements in 1Al-Fe $_2O_3/LDH$ before adsorption and

after pollutants adsorption.

		E _B (eV)							
	C1s	O1s	Mg1s	Al2p	Fe2p	Р2р			
1Al-Fe ₂ O ₃ /LDH	284.8	531.90	1303.61	74.03	710.75				
1Al-Fe ₂ O ₃ /LDH-MO	284.8	532.00	1304.39	74.31	711.59				
1AI-Fe ₂ O ₃ /LDH-CR	284.8	532.32	1304.48	74.67	711.44				
1Al-Fe ₂ O ₃ /LDH-P	284.8	531.73	1303.99	74.14	711.31	133.49			

Table S12. Binding energies of Fe2p in 1Al-Fe $_2O_3$ /LDH before adsorption and after

pollutants adsorption.

	E _B (eV)							
	Fe2p _{1/2} satellite		Fe2p _{1/2}		Fe2p _{3/2} satellite		Fe2p _{3/2}	
	FeⅢ	Fe II	FeⅢ	Fe II	FeⅢ	Fe II	FeⅢ	Fe II
1Al-Fe ₂ O ₃ /LDH	733.72	730.70	727.05	724.17	719.75	717.17	712.89	710.31
1Al-Fe ₂ O ₃ /LDH-MO	735.03	732.26	727.71	724.83	719.85	716.03	712.51	710.76
1AI-Fe ₂ O ₃ /LDH-CR	735.03	732.69	728.95	725.30	719.89	716.50	712.88	710.93
1Al-Fe ₂ O ₃ /LDH-P	734.42	730.42	727.05	724.36	719.72	716.75	712.94	710.69

Reference

- 1. W. Shi, Y. Fu, W. Jiang, Y. Ye, J. Kang, D. Liu, Y. Ren, D. Li, C. Luo and Z. Xu, Enhanced phosphate removal by zeolite loaded with Mg–Al–La ternary (hydr)oxides from aqueous solutions: Performance and mechanism, *Chem. Eng. J.*, 2019, **357**, 33-44.
- D. Mitrogiannis, M. Psychoyou, I. Baziotis, V. J. Inglezakis, N. Koukouzas, N. Tsoukalas, D. Palles, E. Kamitsos, G. Oikonomou and G. Markou, Removal of phosphate from aqueous solutions by adsorption onto Ca(OH) 2 treated natural clinoptilolite, *Chem. Eng. J.*, 2017, 320, 510-522.
- 3. R. Li, J. J. Wang, B. Zhou, M. K. Awasthi, A. Ali, Z. Zhang, L. A. Gaston, A. H. Lahori and A. Mahar, Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios, *Sci. Total. Environ.*, 2016, **559**, 121-129.
- 4. W. Xiong, J. Tong, Z. Yang, G. Zeng, Y. Zhou, D. Wang, P. Song, R. Xu, C. Zhang and M. Cheng, Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism, *J. Colloid Interface Sci.*, 2017, **493**, 17-23.
- 5. X. Min, X. Wu, P. Shao, Z. Ren, L. Ding and X. Luo, Ultra-high capacity of lanthanumdoped UiO-66 for phosphate capture: Unusual doping of lanthanum by the reduction of coordination number, *Chem. Eng. J.*, 2019, **358**, 321-330.
- 6. J. Li, Q. Fan, Y. Wu, X. Wang, C. Chen, Z. Tang and X. Wang, Magnetic polydopamine decorated with Mg–Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes, *J. Mater. Chem.*, 2016, **4**, 1737-1746.
- 7. W. Yao, S. Yu, J. Wang, Y. Zou, S. Lu, Y. Ai, N. S. Alharbi, A. Alsaedi, T. Hayat and X. Wang, Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides, *Chem. Eng. J.*, 2017, **307**, 476-486.
- 8. R.-r. Shan, L.-g. Yan, K. Yang, S.-j. Yu, Y.-f. Hao, H.-q. Yu and B. Du, Magnetic Fe3O4/MgAI-LDH composite for effective removal of three red dyes from aqueous solution, *Chem. Eng. J.*, 2014, **252**, 38-46.
- 9. S. Chen, Y. Huang, X. Han, Z. Wu, C. Lai, J. Wang, Q. Deng, Z. Zeng and S. Deng, Simultaneous and efficient removal of Cr(VI) and methyl orange on LDHs decorated porous carbons, *Chem. Eng. J.*, 2018, **352**, 306-315.
- 10. C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le and J. Yu, Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions, *J. Hazard. Mater.*, 2017, **321**, 801-811.
- 11. T. Liu, X. Chen, X. Wang, S. Zheng and L. Yang, Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3, *Chem. Eng. J.*, 2018, **335**, 443-449.