Supporting Information

A novel Fe-free photo-electro-Fenton-like system for enhanced ciprofloxacin destruction: bifunctional Z-scheme WO₃/g-C₃N₄

Xiaoyu Bai^a, Yi Li^a*, Liangbo Xie^a, Xiaohui Liu^a, Sihui Zhan^b*, Wenping Hu^a

^a Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.

^b Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.

Fig. S1 XRD patterns of WO₃/g-C₃N₄, WO₃ and g-C₃N₄.

Fig. S2 FT-IR spectrum of WO₃/g-C₃N₄, WO₃ and g-C₃N₄.

Fig. S3 XPS survey of $WO_3/g-C_3N_4$ (1:6), WO_3 and $g-C_3N_4$.

Fig. S4 EPR spectrum of $WO_3/g-C_3N_4$ (1:6).

Fig. S5 Degradation rate of CIP with $WO_3/g-C_3N_4$ (1:6) and the mechanical mixture containing WO_3 and $g-C_3N_4$ with molar ratio 1:6 in PEF-like system, respectively.

Fig. S6 The concentration of electro-generated H_2O_2 at different pH in PEF-like system with WO_3/g - C_3N_4 (1:6).

Fig. S7 Crystal structures of monoclinic $WO_3(a)$ and $g-C_3N_4(b, c)$.

Fig. S8 Electron density maps of WO_3 (a), $g-C_3N_4$ (b) and $WO_3/g-C_3N_4$ model. Blue and red represented the most electro-poor and electro-rich regions, respectively.

Fig. S9 The concentration of electro-generated H_2O_2 in PEF-like system and EF-like system with $WO_3/g-C_3N_4$ (1:6).

Fig. S10 XRD patterns of fresh and used $WO_3/g-C_3N_4$ (1:6) in PEF-like system.

Fig. S11 FT-IR spectrum of fresh and used $WO_3/g-C_3N_4$ (1:6) in PEF-like system.

Samples	Specific surface area (m ² ·g ⁻¹)	Pore volume (cm ³ ·g ⁻¹)	Average pore size (nm)
$g-C_3N_4$	15.04	0.102	27.36
WO ₃	18.63	0.145	31.11
WO ₃ /g-C ₃ N ₄ (1:6)	26.33	0.101	15.38

 Table S1 Summary of the textural parameters of the samples.

Table S2 The intermediates of CIP degradation.

Compounds	Molecular formula	Structural formula	m/z
CIP	C ₁₇ H ₁₈ FN ₃ O ₃		332

		0 0	
А	C ₁₆ H ₁₈ FN ₃ O ₄		348
В	C ₁₇ H ₁₉ N ₃ O ₄		330
С	C ₁₅ H ₁₆ FN ₃ O ₃	F NH ₂ H NH ₂ H NH ₂ H	306
D	C ₁₆ H ₁₈ FN ₃ O		288
E	C ₁₅ H ₁₇ N ₃ O ₄	HO HO NH ₂ H H	304
F	C ₁₃ H ₁₁ FN ₂ O ₃		263
G	C ₁₀ H ₁₁ FN ₂ O ₃	F H ₂ N N OH N OH	227
Н	C ₁₀ H ₅ FNO ₃		204