MXene as non-metal charge mediator in 2D layered CdS@Ti₃C₂@TiO₂ composites with superior Z-scheme visible light-driven photocatalytic activity

Qiaoran Liu^a, Xiaoyao Tan^b, Shaobin Wang^a, Fang Ma^c, Hussin Znad^a, Zhangfeng Shen^{d*}, Lihong Liu^{a*}, Shaomin Liu^{a*}

^aWA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Australia ^bSchool of Environmental and Chemical Engineering, Tianjin Polytechnic University, China ^cState Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, China ^dCollege of Biological, Chemical Science and Engineering, Jiaxing University, China *Email: <u>zfshen@mail.zjxu.edu.cn</u>; <u>Lihong.Liu@curtin.edu.au</u>; Shaomin.Liu@curtin.edu.au *Telephone: 61-8-92669056

Supporting Information

Samples	Ti (at.%)	C (at.%)	O (at.%)	S (at.%)	Cd (at.%)
Ti ₃ C ₂	83.78	13.54	2.68	-	-
Ti ₃ C ₂ @TiO	74.63	8.41	16.96	-	-
2					
1:1CTT	62.54	7.23	13.22	3.81	13.20
2:1CTT	50.06	5.69	10.81	7.35	26.09
3:1CTT	37.52	4.03	8.12	11.39	38.94
4:1CTT	24.19	2.45	5.21	15.37	52.78

Table S1. Elemental analysis (weight percentage) of as-prepared samples.

Fig. S1 The photocatalytic mechanism of conventional Type-II $CdS@TiO_2$ heterojunction.