Electronic Supporting Information for Single-Particle ICP-TOFMS with Online Microdroplet Calibration for the Simultaneous Quantification of Diverse Nanoparticles in Complex Matrices

Kamyar Mehrabi¹, Detlef Günther¹, Alexander Gundlach-Graham^{1,2*}

1.ETH Zurich, Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland

2. Iowa State University, Department of Chemistry, 2415 Osborne Drive, Ames IA 50011

*Corresponding author: alexgg@iastate.edu

Table of Contents

Table S1	Operating Parameters
Fig. S1	Comparison of Cs and Ho as for use as plasma-uptake standard
Fig. S2	Plasma uptake rate determined by online microdroplet calibration for multiple
	ciencits
Fig. S3	Quantification of Au NPs in Triton X-114 matrix
Fig. S4	Plasma uptake rate compared to transport efficiency
Fig. S5	Multi-NP (Ag, Au, and Pt) quantification in DI water
Table S2	Detection thresholds, PNCs, and mass concentration of NPs found in WWTP effluent sample
Fig. S6	Average mass spectrum of Rh-containing NPs in WWTP effluent

Table S1. Operating parameters.					
Microdroplet Introduction					
Droplet Diameter	65 μm				
Droplet Frequency	50 Hz				
Droplet Burst Length	1000 droplets, 20 s				
He Gas Flow in Falling Tube	0.56 L min ⁻¹				
Ar Gas Flow in Falling Tube	0.15 L min ⁻¹				
Pneumatic Nebulizer					
Nebulizer Gas (Ar)	0.9 L min ⁻¹				
Solution Uptake Rate	~400 µL min ⁻¹				
ICP Conditions					
Intermediate Gas Flow (Ar)	0.8 L min ⁻¹				
Outer Gas Flow (Ar)	15 L min ⁻¹				
Power	1550 W				
Sampling Position	5.6 mm above load coil				
TOFMS Conditions					
TOF Spectral Acquisition Rate	21.739 kHz				

Averaged Spectrum Acquisition Rate* 494.07 Hz (2.02 ms)

*Averaged mass spectra are composed of data summed from 44 full mass spectra collected every 46 µs.

Fig. S1. ICP-TOFMS time trace of 5 ng mL⁻¹ of Ho and Cs in acid vs. water. Ho signal is spiky in the water sample due to its instability in water. However, Cs signal shows a similar behavior in both samples.

Fig. S2. q_{plasma} calculated for several elements using multi-element droplets and dissolved standards of each analyte element. Because a true value of q_{plasma} is not known, all reported values are best estimates. The q_{plasma} determined with Cs, which we use as a plasma-uptake standard, is within 20% (dashed lines) of that obtained for all other elements.

In Fig. S3, we provide results for the quantification of Au NPs in increasing concentrations of Triton X-114 surfactant. Unlike with the PBS buffer (see Fig. 2), we did not observe significant signal attenuation with increasing concentration of Triton, i.e. we did not observe a major plasma-related matrix effect. For Triton matrix, one can size NPs correctly using the conventional particle size method or our online microdroplet method. However, because Triton is a surfactant, it changes the surface tension of the solution and, as a result, it can cause a change in nebulization and transport efficiencies. Increasing Triton concentration causes an increase in the portion of the sample delivered to the plasma. In Fig. S3d, we shown that, by using online plasma-uptake calibration, we are able to measure PNC more accurately and with better consistency (RSD = 7.7%) than if a constant nebulization efficiency were assumed, as is convention in most *sp*-ICP-MS analyses.

Fig. S3. Study on the effect of the matrix on the calibration NP diameter and PNC from a serial dilution of Triton X-114. **a)** Normalized signal intensities from Au in droplets and in NPs for increasing concentrations of Triton. **b)** Determined Au NP diameters in all Triton solutions. The box and whiskers represent the spread of NP diameters determined in three measurement replicates, each of 150 s in duration. **c)** Normalized sensitivities of Cs both from nebulized sample and in microdroplets as a function of Triton concentration and the corresponding q_{plasma} values. **d)** Particle number concentrations of Au NPs based on the conventional particle-size calibration method and with online plasma-uptake determination.

Fig. S4. Transport efficiency (TE) determined as q_{plasma}/q_{neb} ; TE values were normalized to TE in DI water. Liquid flow to the nebulizer was measured online with a liquid flow meter (SLI Liquid Flow Meter, Sensirion, Switzerland). Constant q_{neb} indicates that the changes in q_{plasma} in the PBS (**a**) and Triton-X (**b**) matrices were due to matrix-dependent transport efficiencies.

Fig. S5. SEM size distribution measurement of silver (a), gold (b), and platinum (c) NPs. Particle number concentrations (e) and NP diameters (f) for mixtures of NPs in DI water at three dilution factors. In order to have comparable concentrations, measured PNCs in panel (e) are back-calculated to the stock concentration; dilution factors of each nanoparticle are provided in (d). Good agreement in terms of PNC and NP diameter were found. SEM data representative of sizing which was obtained from SEM and the reference values from manufacturer data sheets.

Isotope Used	<i>Sc</i> * (ion counts)	Xc Mass** (fg)	PNC (particles/mL)			Mass Concentration in NPs (pg/mL)**			
⁴⁷ Ti + ⁴⁹ Ti	3.9		264	±	43				
${}^{52}Cr + {}^{53}Cr$	9.3		378	±	72				
${}^{54}\text{Fe} + {}^{57}\text{Fe}$	24		396	±	22				
⁵⁵ Mn	12		292	±	58				
${}^{63}Cu + {}^{65}Cu$	40		173	±	81				
¹⁰³ Rh	3.4	0.27	446	±	84	9.9	±	4.0	
¹⁰⁷ Ag + ^{1 09} Ag	3.8	0.30	246	±	58	0.14	±	0.10	
$^{118}Sn + ^{120}Sn$	9.5		200	±	38				
¹³⁹ La	4.2		68	±	14				
$^{140}Ce + {}^{142}Ce$	71	2.6	16907	±	337	342	±	33	
141 Pr	3.4		209	±	33		±		
¹⁹⁷ Au	3.4	0.49	50	±	34	0.03	\pm	0.04	
$^{206}Pb + ^{208}Pb$	13		246	±	37				
	Isotope Used ${}^{47}\text{Ti} + {}^{49}\text{Ti}$ ${}^{52}\text{Cr} + {}^{53}\text{Cr}$ ${}^{54}\text{Fe} + {}^{57}\text{Fe}$ ${}^{55}\text{Mn}$ ${}^{63}\text{Cu} + {}^{65}\text{Cu}$ ${}^{103}\text{Rh}$ ${}^{107}\text{Ag} + {}^{109}\text{Ag}$ ${}^{118}\text{Sn} + {}^{120}\text{Sn}$ ${}^{139}\text{La}$ ${}^{140}\text{Ce} + {}^{142}\text{Ce}$ ${}^{141}\text{Pr}$ ${}^{197}\text{Au}$ ${}^{206}\text{Pb} + {}^{208}\text{Pb}$	Sc*Isotope Used(ion counts) ${}^{47}Ti + {}^{49}Ti$ 3.9 ${}^{52}Cr + {}^{53}Cr$ 9.3 ${}^{52}Cr + {}^{57}Fe$ 24 ${}^{55}Mn$ 12 ${}^{63}Cu + {}^{65}Cu$ 40 ${}^{103}Rh$ 3.4 ${}^{107}Ag + {}^{109}Ag$ 3.8 ${}^{118}Sn + {}^{120}Sn$ 9.5 ${}^{139}La$ 4.2 ${}^{140}Ce + {}^{142}Ce$ 71 ${}^{141}Pr$ 3.4 ${}^{197}Au$ 3.4 ${}^{206}Pb + {}^{208}Pb$ 13	Sc^* Xc Mass**Isotope Used(ion counts)(fg) ${}^{47}\text{Ti} + {}^{49}\text{Ti}$ 3.9 ${}^{52}\text{Cr} + {}^{53}\text{Cr}$ 9.3 ${}^{52}\text{Cr} + {}^{53}\text{Cr}$ 9.3 ${}^{54}\text{Fe} + {}^{57}\text{Fe}$ 24 ${}^{55}\text{Mn}$ 12 ${}^{63}\text{Cu} + {}^{63}\text{Cu}$ 40 ${}^{103}\text{Rh}$ 3.4 0.27 ${}^{107}\text{Ag} + {}^{109}\text{Ag}$ 3.8 0.30 ${}^{118}\text{Sn} + {}^{120}\text{Sn}$ 9.5 ${}^{139}\text{La}$ 4.2 ${}^{140}\text{Ce} + {}^{142}\text{Ce}$ 71 2.6 ${}^{141}\text{Pr}$ 3.4 0.49 ${}^{206}\text{Pb} + {}^{208}\text{Pb}$ 13	S_{C}^{*} X_{C} Mass**HereIsotope Used(ion counts)(fg)(partial ${}^{47}\text{Ti} + {}^{49}\text{Ti}$ 3.9 264 ${}^{52}\text{Cr} + {}^{53}\text{Cr}$ 9.3 378 ${}^{54}\text{Fe} + {}^{57}\text{Fe}$ 24 396 ${}^{55}\text{Mn}$ 12 292 ${}^{63}\text{Cu} + {}^{65}\text{Cu}$ 40 173 ${}^{103}\text{Rh}$ 3.4 0.27 446 ${}^{107}\text{Ag} + {}^{109}\text{Ag}$ 3.8 0.30 246 ${}^{118}\text{Sn} + {}^{120}\text{Sn}$ 9.5 200 ${}^{139}\text{La}$ 4.2 68 ${}^{140}\text{Ce} + {}^{142}\text{Ce}$ 71 2.6 16907 ${}^{141}\text{Pr}$ 3.4 0.49 50 ${}^{197}\text{Au}$ 3.4 0.49 50 ${}^{206}\text{Pb} + {}^{208}\text{Pb}$ 13 246	S_{c}^{*} X_{c} Mass**PNCIsotope Used(ion counts)(fg)(particles) ${}^{47}\text{Ti} + {}^{49}\text{Ti}$ 3.9 264 \pm ${}^{52}\text{Cr} + {}^{53}\text{Cr}$ 9.3 378 \pm ${}^{54}\text{Fe} + {}^{57}\text{Fe}$ 24 396 \pm ${}^{55}\text{Mn}$ 12 292 \pm ${}^{63}\text{Cu} + {}^{65}\text{Cu}$ 40 173 \pm ${}^{103}\text{Rh}$ 3.4 0.27 446 \pm ${}^{107}\text{Ag} + {}^{109}\text{Ag}$ 3.8 0.30 246 \pm ${}^{118}\text{Sn} + {}^{120}\text{Sn}$ 9.5 200 \pm ${}^{140}\text{Ce} + {}^{142}\text{Ce}$ 71 2.6 16907 \pm ${}^{141}\text{Pr}$ 3.4 $$ 209 \pm ${}^{197}\text{Au}$ 3.4 0.49 50 \pm ${}^{206}\text{Pb} + {}^{208}\text{Pb}$ 13 246 \pm	S_{C}^{*} X_{C} Mass**PNCIsotope Used(ion counts)(fg)(particles/mL) 4^{7} Ti + 4^{9} Ti 3.9 264 ± 43 5^{2} Cr + 5^{3} Cr 9.3 378 ± 72 5^{4} Fe + 5^{7} Fe 24 396 ± 22 5^{5} Mn 12 292 ± 58 6^{3} Cu + 6^{5} Cu 40 173 ± 81 103 Rh 3.4 0.27 446 ± 84 107 Ag + 109 Ag 3.8 0.30 246 ± 58 118 Sn + 120 Sn 9.5 200 ± 38 139 La 4.2 68 ± 14 140 Ce + 142 Ce 71 2.6 16907 ± 337 141 Pr 3.4 $$ 209 ± 33 197 Au 3.4 0.49 50 ± 34 206 Pb + 208 Pb 13 246 ± 37	S_{C}^{*} X_{C} Mass**PNCConcentsIsotope Used(ion counts)(fg)(particles/mL)NPs 47 Ti + 49 Ti 3.9 264 ± 43 52 Cr + 53 Cr 9.3 378 ± 72 54 Fe + 57 Fe 24 396 ± 22 55 Mn 12 292 ± 58 63 Cu + 65 Cu 40 173 ± 81 103 Rh 3.4 0.27 446 ± 84 9.9 107 Ag + 109 Ag 3.8 0.30 246 ± 58 0.14 118 Sn + 120 Sn 9.5 200 ± 38 139 La 4.2 68 ± 14 140 Ce + 142 Ce 71 2.6 16907 ± 337 342 141 Pr 3.4 0.49 50 ± 34 0.03 206 Pb + 208 Pb 13 246 ± 37	Sc*Xc Mass**PNCConcentrIsotope Used(ion counts)(fg)(particles/mL)NPs (pg/ 4^7 Ti + 4^9 Ti3.9 264 ± 43 5^2 Cr + 5^3 Cr9.3 378 ± 72 5^4 Fe + 5^7 Fe24 396 ± 22 5^5 Mn12 292 ± 58 6^3 Cu + 6^5 Cu40 173 ± 81 10^3 Rh3.40.27446 ± 84 9.9 \pm 10^7 Ag + 1^{09} Ag3.80.30 246 ± 58 0.14 \pm 118 Sn + 120 Sn9.5 200 ± 38 1^{39} La4.2 68 ± 14 1^{40} Ce + 1^{42} Ce71 2.6 16907 ± 337 $342 \pm$ 1^{41} Pr 3.4 0.49 50 ± 34 $0.03 \pm$ 1^{97} Au 3.4 0.49 50 ± 34 $0.03 \pm$ 2^{206} Pb + 2^{208} Pb 13 246 ± 37	

Table S2. LODs, PNCs, and total mass concentrations of NPs found in effluent of WWTP

* S_C is the signal domain critical value; signals above these count values are considered to originate from particles. This critical value is typically considered to be the limit of detection (LOD) for *sp*-ICP-MS analyses. The critical values used here are based on treating the background as a compound-Poisson distribution^{1, 2} and calculated for a false-positive rate of 0.01%. X_C is the content domain critical value, reported in units of mass.

**Mass-based single-particle critical values (X_C) and total mass concentration could only be measured for analyte elements that were included in online microdroplet standards, i.e. Ag, Ce, Au, and Pt. The Rh element sensitivity is estimated based on the total-isotope sensitivity of ¹⁰⁷Ag+¹⁰⁹Ag.

Figure S6. Backgroud-subtracted average mass spectrum from 10^{103} Rh-containing particle signals. The absence and/or low abundance of Na, Cu, Sr, and Pb signals from the mass spectrum indicated that potential interfences from 23 Na⁴⁰Ar₂⁺, 63 Cu⁴⁰Ar⁺, 87 SrO⁺, and 206 Pb²⁺ are not responsible for the intense 103 Rh⁺ signal. Additionally, the (mono-) isotopic pattern of Rh is observed. Also evident in the average mass spectrum, is the concomitant signal from Ce (measured with the natural ~9:1 isotope ratio of 140 Ce: 142 Ce).

References

- 1. A. Gundlach-Graham, L. Hendriks, K. Mehrabi and D. Günther, Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and its Application to Single-Particle Detection, *Anal. Chem.*, 2018, **90**, 11847-11855.
- 2. L. Hendriks, A. Gundlach-Graham and D. Günther, Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model, *J. Anal. At. Spectrom.*, 2019, **34**, 1900-1909.