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Text A.1. The synthetic processes of Fe3-xCrxO4, (0<x<1).

Polyethylene glycol, with an average molecular weight of 600 (PEG-600), was employed 

as a soft template. In brief, 2.0 mL glacial acetic acid and 10 mL of PEG-600 were added 

to 60 mL aqueous solution of FeSO4•7H2O and CrCl36H2O (the total moles of Fe and Cr 

ions was 6.0 mmol). The solution was stirred with a continuous N2 flow. Then, another 

60 mL of lye solution containing NaOH, NaNO3 and a few drops of hydrazine hydrate 

was added dropwise to the above solution. After that, the reflux reaction was proceeded 

with a microwave reactor at 98.0±2.0 oC for 15-60 min with an output power of 600 W. 

The black precipitate was collected and washed several times, and then freeze-dried in 

vacuum.
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Text A. 2. The characterization details of the prepared chromium-magnetite samples.

Powder X-ray diffraction (PXRD) patterns were recorded between 10o to 80o (2θ) at a 

step of 4o min-1 on a Bruker D8 advance diffractometer equipped with Cu Kα radiation 

(40 kV and 40 mA) at room temperature. 

BET specific surface area was measured by nitrogen physisorption on a Quantachrome 

Instruments Quadrasorb SI surface area and pore size analyzer, after degassed at 110 oC 

for 12 h. Pore size distribution was also tested and analyzed by the adsorption branch 

(BJH model). 

X-ray photoelectron spectrometer (XPS) was performed on a Thermo ESCALAB 250XI 

multifunctional imaging electron spectrometer, equipped with monochromatic Al Kα (hv 

=1486.6 eV) radiation. The curve fitting was carried out by XPSPEAK4.1 software using 

a Gaussian-Lorentz peak shape and Shirley background function. The binding energies of 

Fe2p and O1s were determined, and the carbon signal (C1s) at 284.8 eV was taken as a 

reference for binding energy calibration. 

Scanning transmission electron microscopy 1 was observed on Hitachi 8020 using 2 kV 

accelerating voltage. High resolution transmission electron microscopy (HRTEM) was 

observed on a FEI Tecnai G2 F20 S-Twin operating at 200 kV. Nanocrystal morphology, 

size distributions and lattice fringes were scrutinized with Gatan software Digital 

Micrograph (TM) 3.7.4. 

The Raman spectrum was performed at room temperature with a Renishaw in Via Laser 

Raman Spectrometer by employing 514.5 nm line of Ar ion laser. A wavelength band of 
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100- 900 nm was collected with a spectral resolution of 6 cm-1.

The ESR spin-trapped signals of radicals was conducted on a Bruker E500 spectrometer 

with 0.2 g L-1 magnetite sample and 50 mmol DMPO under UVA irradiation (λ=365 nm). 

The detections of •OH and SO4
•were carried out in deionized water. The ESR was 

processed with the center field at 323 mT, microwave frequency of 9.057 GHz, power of 

0.998 mW, sweep width of 5 mT, sweep time of 1.0 min and time constant of 0.03 s. 

At the end of the catalytic test, the leaching Fe ions concentration was determined using a 

Flame Atomic Absorption Spectrophotometer (FAAS) Hitachi Z-2000 at 248.3 nm, with 

a hollow-cathode lamps operating at 30 mA and an acetylene air-flame. 

The supernatant solution after reaction was analyzed by total organic carbon (TOC) using 

a TOC analyzer (Shimadzu, TOC-VPV) using the nonpurgeable organic carbon method.
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Text A.3. The conditions of HPLC for the determination of CBZ.

CBZ was analyzed using a Waters e2695 High Performance Liquid Chromatography 

(HPLC) quipped with a diode array detector (DAD). The column was a Waters XBridge 

C18 column (250 × 4.6 mm, 5 µm). The mobile phase consists of water and methanol 

(35:65, v/v) at a flow rate of 1 mL min-1 under an isocratic condition. The sample 

injection, detection wavelength of DAD, and column temperature were 100 µL, 222 nm, 

and 40 oC, respectively. The retention time of CBZ was 9.9 min.
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Text A.4. The detailed procedures of solid phase extraction and pre-column derivation.

Solid phase extraction

The reaction solution (100 mL, pH ≈ 3) was loaded at a flow rate of 10 mL min-1 on 

the Oasis HLB cartridge (500 mg, 6 mL), which has been previously preconditioned by 2 

× 5 mL methanol and 2 × 5 mL acidic Milli-Q water (pH = 3) in sequence. The cartridge 

was then dried under vacuum for 2 h. The potential intermediate products were 

consecutively eluted with 2 × 1.5 mL dichloromethane, 2 × 2.5 mL ethyl acetate and 2 × 

2.5 mL methanol. These three eluates were combined, dried under a gentle nitrogen 

stream, redissolved in 0.5 mL methanol into a 2 mL amber glass vial, and stored at -20 oC.

Pre-column derivation

Pre-column derivation is necessary to be performed for the detection of 4-CP by 

GC-MS. The above 50 μL of extracts was dried under a gentle nitrogen stream, after 

which the residue was dissolved in 100 µL BSTFA pyridine solution (1:1, v/v). The 

resultant mixture was vigorously vortexed, incubated at 60 oC for 1 h, dried under a 

gentle nitrogen stream, redissolved in 50 µL methyl tert-butyl ether (MTBE), and then 

analyzed by GC-MS. The derivation of 4-CP standards was conducted as the above 

proceudre.
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Text A.5. The parameters of GC-MS and HPLC-HRMS for the analysis of 4-CP and 

other potential intermediate products.

GC-MS conditions for the identification and quantitation of 4-CP

The intermediate product 4-chlorophenol (4-CP) was identified and quantified by a 

Thermo TRACETM 1300 gas chromatography connected to a TSQ 8000 Evo mass 

spectrometer (Waltham, MA, USA) with an electronic ionization (EI) source. A Thermo 

TG-5MS capillary column (30 m × 0.25 mm i.d., 0.25 μm film thickness) was used for 

chromatographic separation. Ultrapure helium (> 99.999%) was employed as carrier gas 

at a constant flow rate of 1 mL min-1. The injection volume was 1 μL with a splitless inlet. 

The temperature of injector, ion source and transfer line were set at 280, 285 and 285 oC 

respectively. For the identification of 4-CP, the oven temperature was begun at 70 oC, 

held for 5 min, then raised with 7.5 oC min-1 to 285 oC, and held for 10 min. The scan 

range was set at m/z 50‒450 under full scan mode.

For the quantitation of 4-CP, the oven temperature was initially held at 70 oC for 5 

min, increased to 145 oC at a rate of 7.5 oC min-1, then stepped to 285 oC at a rate of 20 oC 

min-1, and held for 8 min. Quantitative analysis was conducted on selected ion 

monitoring (SIM) mode. Based on the peak intensity, the quantitative ion was selected as 

185.1, while the qualitative ions were set at 187.1, 200.1 and 202.1. The retention time of 

4-CP was 12.3 min.

HPLC-HRMS conditions for the identification of other potential intermediate products

The potential intermediate products were identified by a Thermo TRACETM 1300 

gas chromatography connected to a Dionex Ultimate 3000 ultra-high performance liquid 
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chromatographer (UHPLC) coupled to a Thermo Scientific Q Extractive Focus mass 

spectrometry (Thermo Scientific, USA). A Waters Acquity UPLC BEH C18 column (100 

× 2.1 mm, 1.8 μm) was used for chromatographic separation. Table S1 shows the 

instrumental operating parameters of UHPLC-HRMS.

Under the positive mode, the retention time and molecular ion of climbazole were 

28.07 min and m/z 293.1046. Under the negative mode, the retention time and molecular 

ion of climbazole were 28.05 min and m/z 291.0896.
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Text A.6. The derivation of PNEC in this study.

Based on European Commission Technical Guidance Document, the median 

effective concentration (EC50) or no observed effect concentration (NOEC) of a chemical 

was used to calculate the predicted no effect concentration (PNEC) for the acute or 

chronic effect 2. The PNEC is commonly derived by an assessment factor approach. 

When sufficient toxicity data is available, a statistical extrapolation method for PNEC 

calculation is preferable. If using the assessment factor approach, the PNEC was 

calculated by dividing the lowest acute EC50 or chronic NOEC from the most sensitive 

species by an assessment factor (1000, 100, 50 or 10). If NOEC is absent, EC10 can be 

selected as an alternative. If using the statistical extrapolation methods, at least 10 NOEC 

values for different species containing at least eight taxonomic groups were necessary in 

this study to derive a PNEC value based on species sensitivity distribution (SSD). A log-

logistic model with four fitting parameters (Eq. 1) is usually used to fit the toxicity data3, 4. 

HC5 is a 5th percentile effect concentration based on the SSD, and expected to protect 95% 

of species at this concentration 2.

PNEC = HC5/AF                                                   (1)

where HC5 is a 5th percentile effect concentration according to the SSD. The 

concentration high than HC5 is considered as that 95% of species are safe, and AF is the 

assessment factor of 1.
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Table S1 Instrumental operating parameters of UHPLC-HRMS
Positive ionization mode Negative ionization mode

UHPLC parameter
Flow (mL/min) 0.3
Column temperature (oC) 35
Injection volume (µL) 5
Mobile phase A 5 mM ammonium acetate and 0.05% formic acid in ultrapure water
Mobile phase B Methanol
UHPLC gradient program Time (min) B (%)

0 5
10 5
35 95
50 95
55 5
60 5

MS parameter
Ion source HESI HESI
Spray voltage (V) 3500 3000
Capillary temperature (oC) 350 300
Sheath gas flow rate 40 40
Aux gas flow rate 10 10
Scan range (m/z) 100-500 70-700
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Table S2. Toxicity data of 4-CP to the most sensitive aquatic species

No. Phylum Species Duration 
(d)

Effect Endpoint Conc. 
(mg/L)

Reference

Chronic toxicity
1 Proteobacteria Vibrio fischeri 0.9 Luminescence 

intensity
NOEC 1 5

2 Angiosperms Lemna gibba 7 Number of fronds EC10 4.37 6

3 Cnidaria Hydra vulgaris (pink hydra) 0.0833 Tentacle Clubbing NOEC 5.7 7

4 Cnidaria Hydra viridissima (green hydra) 6 Population growth NOEC 10.3 7

5 Cnidaria Hydra viridissima (green hydra) 0.0833 Tentacle Clubbing NOEC 1.1 7

6 Rotifera Brachionus calyciflorus 2 Progeny numbers NOEC 30 5

7 Chlorophyta Scenedesmus subspicatus 3 Biomass EC10 1.9 8

8 Chlorophyta Scenedesmus subspicatus 2 Population changes, 
general

EC10 5.5 8

9 Chlorophyta Pseudokirchneriella subcapitata 2 Dissolved oxygen 
production

NOEC 5 9

10 Chlorophyta Pseudokirchneriella subcapitata 2 Growth rate NOEC 5 9

11 Chlorophyta Chlorella pyrenoidosa 3 Chlorophyll NOEC 10 10

12 Arthropoda Daphnia magna 21 Biomass NOEC 0.63 8

13 Arthropoda Daphnia magna 9-11 Mortality NOEC 2.6 11

14 Arthropoda Daphnia magna 9-11 Total progeny NOEC 0.6 11

15 Arthropoda Daphnia magna 9-11 Number of broods NOEC 2.6 11
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16 Arthropoda Daphnia magna 9-11 Mean brood size NOEC 0.3 11

17 Arthropoda Daphnia magna 21 Reproduction NOEC 0.63 12

18 Arthropoda Daphnia magna 2 Mortality NOEC 1.1 13

19 Arthropoda Ceriodaphnia dubia 7-10 Total progeny NOEC 1.6 11

20 Arthropoda Ceriodaphnia dubia 7-10 Number of broods NOEC 1.6 11

21 Arthropoda Ceriodaphnia dubia 7-10 Mean brood size NOEC 1.6 11

22 Arthropoda Ceriodaphnia dubia 7-10 Mortality NOEC 0.2 11

23 Chordata Cyprinodon variegatus 4 Mortality NOEC 3.2 14

24 Chordata Carassius auratus (Fish scale cell 
line, GFS)

1 Disruption of cell 
membranes

IC10 32 a 15

Acute toxicity
1 Proteobacteria Vibrio fischeri 0.9 Luminescence 

intensity
EC50 3.23 5

2 Angiosperms Lemna minor 7 Dry weight EC50 26 a 16

3 Angiosperms Lemna minor 7 Number of fronds EC50 33.2 a 16

4 Angiosperms Lemna minor 7 Number of plants EC50 36.1 a 16

5 Angiosperms Lemna gibba 7 Dry weight EC50 54 16

6 Angiosperms Lemna gibba 7 Number of plants EC50 56 16

7 Angiosperms Lemna gibba 7 Number of fronds EC50 36.0 a 6, 16

8 Cnidaria Hydra vulgaris (pink hydra) 4 Mortality LC50 32 7

9 Cnidaria Hydra vulgaris (pink hydra) 0.0417 Tentacle Clubbing EC50 43 7

10 Cnidaria Hydra viridissima (green hydra) 4 Mortality LC50 45 7
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11 Cnidaria Hydra viridissima (green hydra) 0.0833 Tentacle Clubbing EC50 7.8 7

12 Ciliophora Tetrahymena thermophila 2 Cell density EC50 1.54 17

13 Ciliophora Tetrahymena pyriformis 2 Population growth 
rate

IC50 36.7 18

14 Rotifera Brachionus calyciflorus 2 Progeny numbers EC50 38.2 5

15 Chlorophyta Scenedesmus subspicatus 4 Biomass EC50 8 8

16 Chlorophyta Scenedesmus subspicatus 3 Population changes, 
general

EC50 17 8

17 Chlorophyta Pseudokirchneriella subcapitata 2 Dissolved oxygen 
production

EC50 20.88 9

18 Chlorophyta Pseudokirchneriella subcapitata 2 Growth rate EC50 14.75 9

19 Chlorophyta Chlorella vulgaris 4 Growth inhibition EC50 29 19

20 Ochrophyta Skeletonema costatum 5 Total cell count EC50 13.8 20

21 Ochrophyta Skeletonema costatum 5 Total cell volume EC50 11.6 20

22 Arthropoda Saduria entomon 14 Mortality LC50 36.8 21

23 Arthropoda Tisbe battagliai 1 Mortality LC50 21 22

24 Arthropoda Crangon septemspinosa 4 Mortality LC50 4.6 23

25 Arthropoda Nitocra spinipes 4 Mortality LC50 21 24

26 Arthropoda Daphnia magna 9-11 Total progeny EC50 3 11

27 Arthropoda Daphnia magna 9-11 Number of broods EC50 4 11

28 Arthropoda Daphnia magna 9-11 Mean brood size EC50 3 11

29 Arthropoda Daphnia magna 7 Mortality LC50 2.31 25
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30 Arthropoda Daphnia magna 1 Change in direct 
movement

EC50 6.8 26

31 Arthropoda Ceriodaphnia dubia 7-10 Total progeny EC50 2 11

32 Arthropoda Ceriodaphnia dubia 7-10 Number of broods EC50 2 11

33 Arthropoda Ceriodaphnia dubia 7-10 Mean brood size EC50 2 11

34 Arthropoda Ceriodaphnia dubia 9 Mortality LC50 6 11

35 Mollusca Crassostrea rhizophorae 1 Abnormal EC50 20.6 a 27

36 Chordata Platichthys flesus 4 Mortality LC50 5 22

37 Chordata Poeciliopsis lucida (Fish 
Hepatoma cell line, PLHC-1)

1 Membrane damage EC50 398.54 28

38 Chordata Poeciliopsis lucida (Fish 
Hepatoma cell line, PLHC-2)

1 Mitochondrial 
metabolic function

EC50 308.55 28

39 Chordata Tilapia zillii 2 Mortality LC50 4.49 29

40 Chordata Lepomis macrochirus (Fish cell 
line, BF-2)

1.1388 Membrane damage EC50 201.84 30

41 Chordata Pimephales promelas 4 Mortality LC50 4 31

42 Chordata Pimephales promelas 4 Mortality LC50 3.8 31

43 Chordata Pimephales promelas 4 Mortality LC50 5 31

44 Chordata Cyprinodon variegatus 2 Mortality LC50 5.4 14

45 Chordata Poecilia reticulata 4 Mortality LC50 6.3 32

46 Chordata Lepomis macrochirus 4 Mortality LC50 3.8 33
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47 Chordata Oncorhynchus mykiss (Fish 
Gonadal cell line, RTG-2)

1 Cell Viability EC50 1208 34

48 Chordata Oncorhynchus mykiss (Fish Liver 
cell line, R1)

1 Cell Viability EC50 166 35

49 Chordata Oncorhynchus mykiss 4 Mortality LC50 1.9 36

50 Chordata Carassius auratus (Fish scale cell 
line, GFS)

1 Mitochondrial 
metabolic function

IC50 168 15

51 Chordata Carassius auratus (Fish scale cell 
line, GFS)

1 Disruption of cell 
membranes

IC50 140 a 15

52 Chordata Carassius auratus 1 Mortality LC50 9 37
a The value is a geometrical mean value
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Figure S1. HRTEM images of the synthetic Fe2.76Cr0.24O4 sample
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Figure S2. The total ion chromatogram of the D0 (a), D10 (b), and D40 (c) via UHPLC-

HRMS analysis with positive ionization mode at different degradation reaction times.
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Figure S5. The total ion chromatogram of the samples (D0, D10, D20 and D40) via GC-

MS analysis at different degradation reaction times.
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