Electronic Supplementary Information

Photocatalytic transformation of climbazole and 4chlorophenol formation using a floral array of chromiumsubstituted magnetite nanoparticles activated with peroxymonosulfate

Yuanhong Zhong^a, Zhi-Feng Chen^{b,*}, Shi-Chao Yan^b, Wen-Wen Wei^b, Qianxin, Zhang^b, Guoguang Liu^b, Zongwei Cai^{b,c}, Lin Yu^{a,*}

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

^b Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control,
 Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School
 of Environmental Science and Engineering, Institute of Environmental Health and
 Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
 ^c State Key Laboratory of Environmental and Biological Analysis, Department of
 Chemistry, Hong Kong Baptist University, Hong Kong SAR, China

*Corresponding author. Present address: No.100 Waihuan Xi Road, Guangzhou Higher

Education Mega Center, Panyu District, Guangzhou 510006, China

E-mail: chenzhf@gdut.edu.cn (Z. -F. Chen); gych@gdut.edu.cn (L. Yu)

Number of pages: 27

Number of texts: 6

Number of tables: 2

Number of figures: 5

Contents

Text A.1. The synthetic processes of $Fe_{3-x}Cr_xO_4$, (0<x<1).

Text A.2. The characterization details of the prepared chromium-magnetite samples.

Text A.3. The conditions of HPLC for the determination of CBZ.

Text A.4. The detailed procedures of solid phase extraction and pre-column derivation.

Text A.5. The parameters of GC-MS and HPLC-HRMS for the analysis of 4-CP and other potential intermediate products.

Text A.6. The derivation of PNEC in this study.

Table S1 Instrumental operating parameters of UHPLC-HRMS.

 Table S2 Toxicity data of 4-CP to the most sensitive aquatic species

Figure S1 HRTEM images of the synthetic Fe_{2.76}Cr_{0.24}O₄ sample

Figure S2 The total ion chromatogram of the D0 (a), D10 (b), and D40 (c) via UHPLC-

HRMS analysis with positive ionization mode at different degradation reaction times.

Figure S3 The total ion chromatogram of the D0 (a), D10 (b), and D40 (c) via UHPLC-

HRMS analysis with negative ionization mode at different degradation reaction times.

Figure S4 MS spectrums of climbazole in positive and negative mode. MS² spectrum of

293.1046 at 27.99 min (a); MS spectrum at 28.05 min (b).

Figure S5 The total ion chromatogram of the samples (D0, D10, D20 and D40) via GC-MS analysis at different degradation reaction times.

References

Text A.1. The synthetic processes of $Fe_{3-x}Cr_xO_4$, (0<x<1).

Polyethylene glycol, with an average molecular weight of 600 (PEG-600), was employed as a soft template. In brief, 2.0 mL glacial acetic acid and 10 mL of PEG-600 were added to 60 mL aqueous solution of FeSO₄•7H₂O and CrCl₃•6H₂O (the total moles of Fe and Cr ions was 6.0 mmol). The solution was stirred with a continuous N₂ flow. Then, another 60 mL of lye solution containing NaOH, NaNO₃ and a few drops of hydrazine hydrate was added dropwise to the above solution. After that, the reflux reaction was proceeded with a microwave reactor at 98.0±2.0 °C for 15-60 min with an output power of 600 W. The black precipitate was collected and washed several times, and then freeze-dried in vacuum. **Text A. 2.** The characterization details of the prepared chromium-magnetite samples. Powder X-ray diffraction (PXRD) patterns were recorded between 10° to 80° (2θ) at a step of 4° min⁻¹ on a Bruker D8 advance diffractometer equipped with Cu *K* α radiation (40 kV and 40 mA) at room temperature.

BET specific surface area was measured by nitrogen physisorption on a Quantachrome Instruments Quadrasorb SI surface area and pore size analyzer, after degassed at 110 °C for 12 h. Pore size distribution was also tested and analyzed by the adsorption branch (BJH model).

X-ray photoelectron spectrometer (XPS) was performed on a Thermo ESCALAB 250XI multifunctional imaging electron spectrometer, equipped with monochromatic Al $K\alpha$ (hv =1486.6 eV) radiation. The curve fitting was carried out by XPSPEAK4.1 software using a Gaussian-Lorentz peak shape and Shirley background function. The binding energies of Fe2p and O1s were determined, and the carbon signal (C1s) at 284.8 eV was taken as a reference for binding energy calibration.

Scanning transmission electron microscopy ¹ was observed on Hitachi 8020 using 2 kV accelerating voltage. High resolution transmission electron microscopy (HRTEM) was observed on a FEI Tecnai G2 F20 S-Twin operating at 200 kV. Nanocrystal morphology, size distributions and lattice fringes were scrutinized with Gatan software Digital Micrograph (TM) 3.7.4.

The Raman spectrum was performed at room temperature with a Renishaw in Via Laser Raman Spectrometer by employing 514.5 nm line of Ar ion laser. A wavelength band of 100- 900 nm was collected with a spectral resolution of 6 cm^{-1} .

The ESR spin-trapped signals of radicals was conducted on a Bruker E500 spectrometer with 0.2 g L⁻¹ magnetite sample and 50 mmol DMPO under UVA irradiation (λ =365 nm). The detections of 'OH and SO₄'-were carried out in deionized water. The ESR was processed with the center field at 323 mT, microwave frequency of 9.057 GHz, power of 0.998 mW, sweep width of 5 mT, sweep time of 1.0 min and time constant of 0.03 s. At the end of the catalytic test, the leaching Fe ions concentration was determined using a Flame Atomic Absorption Spectrophotometer (FAAS) Hitachi Z-2000 at 248.3 nm, with a hollow-cathode lamps operating at 30 mA and an acetylene air-flame.

The supernatant solution after reaction was analyzed by total organic carbon (TOC) using a TOC analyzer (Shimadzu, TOC-VPV) using the nonpurgeable organic carbon method. Text A.3. The conditions of HPLC for the determination of CBZ.

CBZ was analyzed using a Waters e2695 High Performance Liquid Chromatography (HPLC) quipped with a diode array detector (DAD). The column was a Waters XBridge C18 column ($250 \times 4.6 \text{ mm}, 5 \mu \text{m}$). The mobile phase consists of water and methanol (35:65, v/v) at a flow rate of 1 mL min⁻¹ under an isocratic condition. The sample injection, detection wavelength of DAD, and column temperature were 100 μ L, 222 nm, and 40 °C, respectively. The retention time of CBZ was 9.9 min.

Text A.4. The detailed procedures of solid phase extraction and pre-column derivation.

Solid phase extraction

The reaction solution (100 mL, pH \approx 3) was loaded at a flow rate of 10 mL min⁻¹ on the Oasis HLB cartridge (500 mg, 6 mL), which has been previously preconditioned by 2 × 5 mL methanol and 2 × 5 mL acidic Milli-Q water (pH = 3) in sequence. The cartridge was then dried under vacuum for 2 h. The potential intermediate products were consecutively eluted with 2 × 1.5 mL dichloromethane, 2 × 2.5 mL ethyl acetate and 2 × 2.5 mL methanol. These three eluates were combined, dried under a gentle nitrogen stream, redissolved in 0.5 mL methanol into a 2 mL amber glass vial, and stored at -20 °C.

Pre-column derivation

Pre-column derivation is necessary to be performed for the detection of 4-CP by GC-MS. The above 50 μ L of extracts was dried under a gentle nitrogen stream, after which the residue was dissolved in 100 μ L BSTFA pyridine solution (1:1, *v*/*v*). The resultant mixture was vigorously vortexed, incubated at 60 °C for 1 h, dried under a gentle nitrogen stream, redissolved in 50 μ L methyl *tert*-butyl ether (MTBE), and then analyzed by GC-MS. The derivation of 4-CP standards was conducted as the above proceudre.

Text A.5. The parameters of GC-MS and HPLC-HRMS for the analysis of 4-CP and other potential intermediate products.

GC-MS conditions for the identification and quantitation of 4-CP

The intermediate product 4-chlorophenol (4-CP) was identified and quantified by a Thermo TRACETM 1300 gas chromatography connected to a TSQ 8000 Evo mass spectrometer (Waltham, MA, USA) with an electronic ionization (EI) source. A Thermo TG-5MS capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness) was used for chromatographic separation. Ultrapure helium (> 99.999%) was employed as carrier gas at a constant flow rate of 1 mL min⁻¹. The injection volume was 1 µL with a splitless inlet. The temperature of injector, ion source and transfer line were set at 280, 285 and 285 °C respectively. For the identification of 4-CP, the oven temperature was begun at 70 °C, held for 5 min, then raised with 7.5 °C min⁻¹ to 285 °C, and held for 10 min. The scan range was set at *m/z* 50–450 under full scan mode.

For the quantitation of 4-CP, the oven temperature was initially held at 70 °C for 5 min, increased to 145 °C at a rate of 7.5 °C min⁻¹, then stepped to 285 °C at a rate of 20 °C min⁻¹, and held for 8 min. Quantitative analysis was conducted on selected ion monitoring (SIM) mode. Based on the peak intensity, the quantitative ion was selected as 185.1, while the qualitative ions were set at 187.1, 200.1 and 202.1. The retention time of 4-CP was 12.3 min.

HPLC-HRMS conditions for the identification of other potential intermediate products

The potential intermediate products were identified by a Thermo TRACE[™] 1300 gas chromatography connected to a Dionex Ultimate 3000 ultra-high performance liquid

chromatographer (UHPLC) coupled to a Thermo Scientific Q Extractive Focus mass spectrometry (Thermo Scientific, USA). A Waters Acquity UPLC BEH C18 column (100 \times 2.1 mm, 1.8 µm) was used for chromatographic separation. Table S1 shows the instrumental operating parameters of UHPLC-HRMS.

Under the positive mode, the retention time and molecular ion of climbazole were 28.07 min and m/z 293.1046. Under the negative mode, the retention time and molecular ion of climbazole were 28.05 min and m/z 291.0896.

Text A.6. The derivation of PNEC in this study.

Based on European Commission Technical Guidance Document, the median effective concentration (EC₅₀) or no observed effect concentration (NOEC) of a chemical was used to calculate the predicted no effect concentration (PNEC) for the acute or chronic effect ². The PNEC is commonly derived by an assessment factor approach. When sufficient toxicity data is available, a statistical extrapolation method for PNEC calculation is preferable. If using the assessment factor approach, the PNEC was calculated by dividing the lowest acute EC₅₀ or chronic NOEC from the most sensitive species by an assessment factor (1000, 100, 50 or 10). If NOEC is absent, EC₁₀ can be selected as an alternative. If using the statistical extrapolation methods, at least 10 NOEC values for different species containing at least eight taxonomic groups were necessary in this study to derive a PNEC value based on species sensitivity distribution (SSD). A loglogistic model with four fitting parameters (Eq. 1) is usually used to fit the toxicity data^{3, 4}. HC₅ is a 5th percentile effect concentration based on the SSD, and expected to protect 95% of species at this concentration ².

$$PNEC = HC_5 / AF$$
(1)

where HC_5 is a 5th percentile effect concentration according to the SSD. The concentration high than HC_5 is considered as that 95% of species are safe, and AF is the assessment factor of 1.

	Positive ionization mode	Negative ionization mode
UHPLC parameter		
Flow (mL/min)	0.3	
Column temperature (°C)	35	
Injection volume (µL)	5	
Mobile phase A	5 mM ammonium acetate and 0	.05% formic acid in ultrapure water
Mobile phase B	Methanol	
UHPLC gradient program	Time (min)	B (%)
	0	5
	10	5
	35	95
	50	95
	55	5
	60	5
MS parameter		
Ion source	HESI	HESI
Spray voltage (V)	3500	3000
Capillary temperature (°C)	350	300
Sheath gas flow rate	40	40
Aux gas flow rate	10	10
Scan range (m/z)	100-500	70-700

Table S1 Instrumental operating parameters of UHPLC-HRMS

No.	Phylum	Species	Duration (d)	Effect	Endpoint	Conc. (mg/L)	Reference		
Chronic toxicity									
1	Proteobacteria	Vibrio fischeri	0.9	Luminescence intensity	NOEC	1	5		
2	Angiosperms	Lemna gibba	7	Number of fronds	EC10	4.37	6		
3	Cnidaria	Hydra vulgaris (pink hydra)	0.0833	Tentacle Clubbing	NOEC	5.7	7		
4	Cnidaria	Hydra viridissima (green hydra)	6	Population growth	NOEC	10.3	7		
5	Cnidaria	Hydra viridissima (green hydra)	0.0833	Tentacle Clubbing	NOEC	1.1	7		
6	Rotifera	Brachionus calyciflorus	2	Progeny numbers	NOEC	30	5		
7	Chlorophyta	Scenedesmus subspicatus	3	Biomass	EC10	1.9	8		
8	Chlorophyta	Scenedesmus subspicatus	2	Population changes, general	EC10	5.5	8		
9	Chlorophyta	Pseudokirchneriella subcapitata	2	Dissolved oxygen production	NOEC	5	9		
10	Chlorophyta	Pseudokirchneriella subcapitata	2	Growth rate	NOEC	5	9		
11	Chlorophyta	Chlorella pyrenoidosa	3	Chlorophyll	NOEC	10	10		
12	Arthropoda	Daphnia magna	21	Biomass	NOEC	0.63	8		
13	Arthropoda	Daphnia magna	9-11	Mortality	NOEC	2.6	11		
14	Arthropoda	Daphnia magna	9-11	Total progeny	NOEC	0.6	11		
15	Arthropoda	Daphnia magna	9-11	Number of broods	NOEC	2.6	11		

Table S2. Toxicity data of 4-CP to the most sensitive aquatic species

16	Arthropoda	Daphnia magna	9-11	Mean brood size	NOEC	0.3	11
17	Arthropoda	Daphnia magna	21	Reproduction	NOEC	0.63	12
18	Arthropoda	Daphnia magna	2	Mortality	NOEC	1.1	13
19	Arthropoda	Ceriodaphnia dubia	7-10	Total progeny	NOEC	1.6	11
20	Arthropoda	Ceriodaphnia dubia	7-10	Number of broods	NOEC	1.6	11
21	Arthropoda	Ceriodaphnia dubia	7-10	Mean brood size	NOEC	1.6	11
22	Arthropoda	Ceriodaphnia dubia	7-10	Mortality	NOEC	0.2	11
23	Chordata	Cyprinodon variegatus	4	Mortality	NOEC	3.2	14
24	Chordata	Carassius auratus (Fish scale cell line, GFS)	1	Disruption of cell membranes	IC10	32 a	15
Acut	te toxicity						
1	Proteobacteria	Vibrio fischeri	0.9	Luminescence intensity	EC50	3.23	5
				moonsio			
2	Angiosperms	Lemna minor	7	Dry weight	EC50	26 ^a	16
2 3	Angiosperms Angiosperms	Lemna minor Lemna minor	7 7	Dry weight Number of fronds	EC50 EC50	26 ^a 33.2 ^a	16 16
2 3 4	Angiosperms Angiosperms Angiosperms	Lemna minor Lemna minor Lemna minor	7 7 7	Dry weight Number of fronds Number of plants	EC50 EC50 EC50	26 ^a 33.2 ^a 36.1 ^a	16 16 16
2 3 4 5	Angiosperms Angiosperms Angiosperms Angiosperms	Lemna minor Lemna minor Lemna minor Lemna gibba	7 7 7 7	Dry weight Number of fronds Number of plants Dry weight	EC50 EC50 EC50 EC50	26 ^a 33.2 ^a 36.1 ^a 54	16 16 16 16
2 3 4 5 6	Angiosperms Angiosperms Angiosperms Angiosperms Angiosperms	Lemna minor Lemna minor Lemna minor Lemna gibba Lemna gibba	7 7 7 7 7	Dry weight Number of fronds Number of plants Dry weight Number of plants	EC50 EC50 EC50 EC50 EC50	26 ^a 33.2 ^a 36.1 ^a 54 56	16 16 16 16
2 3 4 5 6 7	Angiosperms Angiosperms Angiosperms Angiosperms Angiosperms	Lemna minor Lemna minor Lemna minor Lemna gibba Lemna gibba Lemna gibba	7 7 7 7 7 7	Dry weight Number of fronds Number of plants Dry weight Number of plants Number of fronds	EC50 EC50 EC50 EC50 EC50 EC50	26 ^a 33.2 ^a 36.1 ^a 54 56 36.0 ^a	16 16 16 16 16 6, 16
2 3 4 5 6 7 8	Angiosperms Angiosperms Angiosperms Angiosperms Angiosperms Cnidaria	Lemna minor Lemna minor Lemna minor Lemna gibba Lemna gibba Lemna gibba Hydra vulgaris (pink hydra)	7 7 7 7 7 7 4	Dry weight Number of fronds Number of plants Dry weight Number of plants Number of fronds Mortality	EC50 EC50 EC50 EC50 EC50 EC50 LC50	26 ^a 33.2 ^a 36.1 ^a 54 56 36.0 ^a 32	16 16 16 16 6, 16 7
2 3 4 5 6 7 8 9	Angiosperms Angiosperms Angiosperms Angiosperms Angiosperms Cnidaria Cnidaria	Lemna minor Lemna minor Lemna minor Lemna gibba Lemna gibba Lemna gibba Hydra vulgaris (pink hydra) Hydra vulgaris (pink hydra)	7 7 7 7 7 7 4 0.0417	Dry weight Number of fronds Number of plants Dry weight Number of plants Number of fronds Mortality Tentacle Clubbing	EC50 EC50 EC50 EC50 EC50 LC50 EC50	26 ^a 33.2 ^a 36.1 ^a 54 56 36.0 ^a 32 43	16 16 16 16 6, 16 7 7

11	Cnidaria	Hydra viridissima (green hydra)	0.0833	Tentacle Clubbing	EC50	7.8	7
12	Ciliophora	Tetrahymena thermophila	2	Cell density	EC50	1.54	17
13	Ciliophora	Tetrahymena pyriformis	2	Population growth rate	IC50	36.7	18
14	Rotifera	Brachionus calyciflorus	2	Progeny numbers	EC50	38.2	5
15	Chlorophyta	Scenedesmus subspicatus	4	Biomass	EC50	8	8
16	Chlorophyta	Scenedesmus subspicatus	3	Population changes, general	EC50	17	8
17	Chlorophyta	Pseudokirchneriella subcapitata	2	Dissolved oxygen production	EC50	20.88	9
18	Chlorophyta	Pseudokirchneriella subcapitata	2	Growth rate	EC50	14.75	9
19	Chlorophyta	Chlorella vulgaris	4	Growth inhibition	EC50	29	19
20	Ochrophyta	Skeletonema costatum	5	Total cell count	EC50	13.8	20
21	Ochrophyta	Skeletonema costatum	5	Total cell volume	EC50	11.6	20
22	Arthropoda	Saduria entomon	14	Mortality	LC50	36.8	21
23	Arthropoda	Tisbe battagliai	1	Mortality	LC50	21	22
24	Arthropoda	Crangon septemspinosa	4	Mortality	LC50	4.6	23
25	Arthropoda	Nitocra spinipes	4	Mortality	LC50	21	24
26	Arthropoda	Daphnia magna	9-11	Total progeny	EC50	3	11
27	Arthropoda	Daphnia magna	9-11	Number of broods	EC50	4	11
28	Arthropoda	Daphnia magna	9-11	Mean brood size	EC50	3	11
29	Arthropoda	Daphnia magna	7	Mortality	LC50	2.31	25

30	Arthropoda	Daphnia magna	1	Change in direct movement	EC50	6.8	26
31	Arthropoda	Ceriodaphnia dubia	7-10	Total progeny	EC50	2	11
32	Arthropoda	Ceriodaphnia dubia	7-10	Number of broods	EC50	2	11
33	Arthropoda	Ceriodaphnia dubia	7-10	Mean brood size	EC50	2	11
34	Arthropoda	Ceriodaphnia dubia	9	Mortality	LC50	6	11
35	Mollusca	Crassostrea rhizophorae	1	Abnormal	EC50	20.6 ^a	27
36	Chordata	Platichthys flesus	4	Mortality	LC50	5	22
37	Chordata	<i>Poeciliopsis lucida</i> (Fish Hepatoma cell line, PLHC-1)	1	Membrane damage	EC50	398.54	28
38	Chordata	<i>Poeciliopsis lucida</i> (Fish Hepatoma cell line, PLHC-2)	1	Mitochondrial metabolic function	EC50	308.55	28
39	Chordata	Tilapia zillii	2	Mortality	LC50	4.49	29
40	Chordata	<i>Lepomis macrochirus</i> (Fish cell line, BF-2)	1.1388	Membrane damage	EC50	201.84	30
41	Chordata	Pimephales promelas	4	Mortality	LC50	4	31
42	Chordata	Pimephales promelas	4	Mortality	LC50	3.8	31
43	Chordata	Pimephales promelas	4	Mortality	LC50	5	31
44	Chordata	Cyprinodon variegatus	2	Mortality	LC50	5.4	14
45	Chordata	Poecilia reticulata	4	Mortality	LC50	6.3	32
46	Chordata	Lepomis macrochirus	4	Mortality	LC50	3.8	33

52	Chordata	Carassius auratus	1	Mortality	LC50	9	37
51	Chordata	Carassius auratus (Fish scale cell line, GFS)	1	Disruption of cell membranes	IC50	140 ^a	15
50	Chordata	Carassius auratus (Fish scale cell line, GFS)	1	Mitochondrial metabolic function	IC50	168	15
49	Chordata	Oncorhynchus mykiss	4	Mortality	LC50	1.9	36
48	Chordata	Oncorhynchus mykiss (Fish Liver cell line, R1)	1	Cell Viability	EC50	166	35
47	Chordata	Oncorhynchus mykiss (Fish Gonadal cell line, RTG-2)	1	Cell Viability	EC50	1208	34

^a The value is a geometrical mean value

Figure S1. HRTEM images of the synthetic Fe_{2.76}Cr_{0.24}O₄ sample

Figure S2. The total ion chromatogram of the D0 (a), D10 (b), and D40 (c) via UHPLC-HRMS analysis with positive ionization mode at different degradation reaction times.

Figure S3. The total ion chromatogram of the D0 (a), D10 (b), and D40 (c) via UHPLC-HRMS analysis with negative ionization mode at different degradation reaction times.

Figure S4. MS spectrums of climbazole in positive and negative mode. MS² spectrum of

293.1046 at 27.99 min (a); MS spectrum at 28.05 min (b).

Figure S5. The total ion chromatogram of the samples (D0, D10, D20 and D40) via GC-MS analysis at different degradation reaction times.

References

- M. Liu, J. Hoffman, J. Wang, J. Zhang, B. Nelson-Cheeseman, and A. Bhattacharya, Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe₃O₄/PMN-PT (011). *Sci. ep.*, 2013. 3.
- 2 D. B. Jack, H. B. gaarn, J. S., L. Marita, M. S. j., M. C., O. S. i., O. H., P.-P. A. beatriz, P. F., R. Kirsten, and S.-K. Birgit. Technical guidance document on risk assessment Part II. EUR 20418 EN, , 2003, [cited 2018 Sep 18th]; Available from: <u>http://publications.jrc.ec.europa.eu/repository/bitstream/JRC23785/EUR%2020418%2</u> <u>OEN-2.pdf</u>.
- 3 T. Aldenberg and J. S. Jaworska, Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. *Ecotoxicol. Environ. Saf.*, 2000. **46**(1): 1-18.
- T. Aldenberg and W. Slob, Confidence-limits for hazardous concentrations based on logistically distributed NOEC toxicity data. *Ecotoxicol. Environ. Saf.*, 1993. 25(1): 48-63.
- 5 P. Radix, M. Leonard, C. Papantoniou, G. Roman, E. Saouter, S. Gallotti-Schmitt, H. Thiebaud, and P. Vasseur, Comparison of *Brachionus calyciflorus* 2-D and Microtox (R) chronic 22-h tests with *Daphnia magna* 21-d test for the chronic toxicity assessment of chemicals. *Environ. Toxicol. Chem.*, 1999. 18(10): 2178-2185.
- 6 H. A. Sharma, J. T. Barber, H. E. Ensley, and M. A. Polito, A comparison of the toxicity and metabolism of phenol and chlorinated phenols by *Lemna gibba*, with special reference to 2,4,5-trichlorophenol. *Environ. Toxicol. Chem.*, 1997. **16**(2): 346-350.
- 7 C. A. Pollino and D. A. Holdway, Potential of two hydra species as standard toxicity test animals. *Ecotoxicol. Environ. Saf.*, 1999. **43**(3): 309-316.
- 8 R. Kuhn and M. Pattard, Results of the harmful effects of water pollutants to green algae (*Scenedesmus subspicatus*) in the cell multiplication inhibition test. *Water Res.*, 1990. **24**(1): 31-38.
- 9 C. Y. Chen and J. H. Lin, Toxicity of chlorophenols to *Pseudokirchneriella subcapitata* under air-tight test environment. *Chemosphere*, 2006. **62**(4): 503-509.
- 10 J. C. Huang and E. F. Gloyna, Effect of organic compounds on photosynthetic oxygenation-I. Chlorophyll destruction and suppression of photosynthetic oxygen production. *Water Res.*, 1968. **2**: 347-366.
- 11 U. M. Cowgill and D. P. Milazzo, The sensitivity of *Ceriodaphnia dubia* and *Daphnia magna* to seven chemicals utilizing the three-brood test. *Arch. Environ. Contam. Toxicol.*, 1991. **20**: 211-217.
- 12 R. Kuhn, M. Pattard, K. D. Pernak, and A. Winter, Results of the harmful effects of water pollutants to *Daphnia magna* in the 21 day reproduction test. *Water Res.*, 1989.

23(4): 501-510.

- 13 G. A. LeBlanc, Acute toxicity of priority pollutants to water flea (*Daphnia magna*). *Bull. Environ. Contam. Toxicol.*, 1980. **24**: 684-691.
- 14 P. T. Heitmuller, T. A. Hollister, and P. R. Parrish, Acute toxicity of 54 industrial chemicals to Sheepshead Minnows (*Cyprinodon variegatus*). *Bull. Environ. Contam. Toxicol.*, 1981. **27**: 596-604.
- 15 H. Saito, J. Koyasu, T. Shigeoka, and I. Tomita, Cytotoxicity of chlorophenols to goldfish GFS cells with MTT and LDH assays. *Toxicol. In Vitro*, 1994. 8(5): 1107-1112.
- 16 U. M. Cowgill, D. P. Milazzo, and B. D. Landenberger, The sensitivity of *Lemna gibba* G-3 and four clones of *Lemna minor* to eight common chemicals using a 7-day test. *Research Journal of the Water Pollution Control Federation*, 1991. **63**(7): 991-998.
- A. M. Drotar and R. Fall, Characterization of a xenobiotic thiol methyltransferase and its role in detoxication in *Tetrahymena thermophila*. *Pestic. Biochem. Physiol.*, 1986. 25: 396-406.
- 18 S. E. Bryant and T. W. Schultz, Toxicological assessment of biotransformation products of pentachlorophenol: *Tetrahymena* population growth impairment. *Arch. Environ. Contam. Toxicol.*, 1994. **26**(3): 299-303.
- 19 T. Shigeoka, Y. Sato, Y. Takeda, K. Yoshida, and F. Yamauchi, Acute toxicity of chlorophenols to green algae, *Selenastrum capricornutum and Chlorella vulgaris, and quantitative* structure-activity relationships. *Environ. Toxicol. Chem.*, 1988. 7: 847-854.
- U. M. Cowgill, D. P. Milazzo, and B. D. Landenberger, Toxicity of nine benchmark chemicals to *Skeletonema costatum*, a marine diatom. *Environ. Toxicol. Chem.*, 1989.
 8: 451-455.
- 21 M. Oksama and R. Kristoffersson, The toxicity of phenol to *Phoxinus phoxinus*, *Gammarus duebeni*, and *Mesidotea entomon* in brackish water. *Ann. Zool. Fenn.*, 1979. **16**(3): 209-216.
- S. Smith, V. J. Furay, P. J. Layiwola, and J. A. Menezes-Filho, Evaluation of the toxicity and quantitative structure-activity relationships (QSAR) of chlorophenols to the copepodid stage of a marine copepod (*Tisbe battagliai*) and two species of benthic flatfish, the flounder (*Platichthys flesus*) and sole (*Solea solea*). *Chemosphere*, 1994. **28**(4): 825-836.
- 23 D. W. McLeese, V. Zitko, and M. R. Peterson, Structure-lethality relationships for phenols, anilines and other aromatic compounds in shrimp and clams. *Chemosphere*, 1979. 8(2): 53-57.
- 24 E. Linden, B.-E. Bengtsson, O. Svanberg, and G. Sundstrom, The acute toxicity of 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (*Alburnus alburnus*) and the harpacticoid *Nitocra spinipes*. *Chemosphere*, 1979. 8(11-12): 843-851.

- 25 G. A. LeBlanc, B. Hilgenberg, and B. J. Cochrane, Relationships between the structures of chlorinated phenols, their toxicity, and their ability to induce glutathione S-transferase activity in *Daphnia magna*. *Aquat. Toxicol.*, 1988. **12**: 147-156.
- 26 C. E. W. Steinberg, A. Strum, J. Kelbel, S. K. Lee, N. Hertkorn, D. Freitag, and A. A. Kettrup, Changes of acute toxicity of organic chemicals to *Daphnia magna* in the presence of dissolved humic material (DHM). *Acta Hydrochim. Hydrobiol.*, 1992. 20(6): 326-332.
- 27 A. C. S. da Cruz, B. C. Couto, I. A. Nascimento, S. A. Pereira, M. Leite, E. Bertoletti, and P. Zagatto, Estimation of the critical effect level for pollution prevention based on oyster embryonic development toxicity test: The search for reliability. *Environ. Int.*, 2007. **33**(4): 589-595.
- 28 K. Fent and J. Hunn, Cytotoxicity of organic environmental chemicals to fish liver cells (PLHC-1). *Mar. Environ. Res.*, 1996. **42**(1-4): 377-382.
- 29 J. H. Yen, K. H. Lin, and Y. S. Wang, Acute lethal toxicity of environmental pollutants to aquatic organisms. *Ecotoxicol. Environ. Saf.*, 2002. **52**(2): 113-116.
- 30 H. Babich and E. Borenfreund, *In vitro* cytotoxicity of organic pollutants to bluegill sunfish (BF-2) cells. *Environ. Res.*, 1987. **42**: 229-237.
- 31 M. A. Mayes, H. C. Alexander, and D. C. Dill, A study to assess the influence of age on the response of fathead minnows in static acute toxicity tests. *Bull. Environ. Contam. Toxicol.*, 1983. **31**: 139-147.
- 32 J. Saarikoski and M. Viluksela, Influence of pH on the toxicity of substituted phenols to fish. *Arch. Environ. Contam. Toxicol.*, 1981. **10**: 747-753.
- 33 R. J. Buccafusco, S. J. Ells, and G. A. LeBlanc, Acute toxicity of priority pollutants to bluegill (*Lepomis macrochirus*). *Bull. Environ. Contam. Toxicol.*, 1981. 26: 446-452.
- 34 N. C. Bols, S. A. Boliska, D. G. Dixon, P. V. Hodson, and K. L. E. Kaiser, The use of fish cell cultures as an indication of contaminant toxicity to fish. *Aquat. Toxicol.*, 1985. **6**: 147-155.
- 35 H. Segner and D. Lenz, Cytotoxicity assays with the rainbow trout R₁ cell line. *Toxicol. In Vitro*, 1993. **7**(4): 537-540.
- 36 P. V. Hodson, D. G. Dixon, and K. L. E. Kaiser, Measurement of median lethal dose as a rapid indication of contaminant toxicity to fish. *Environ. Toxicol. Chem.*, 1984.
 3: 243-254.
- K. Kobayashi, H. Akitake, and K. Manabe, Relation between toxicity and accumulation of various chlorophenols in goldfish. *Bull. Japan. Soc. Sci. Fish.*, 1979. 45(2): 173-175.