Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

Supplementary Information (SI) High-flux nanofiltration membranes tailored by bioinspired co-deposition of hydrophilic g-C₃N₄ nanosheets for enhanced selectivity towards organics and salts

Wenyuan Ye^a, Hongwei Liu^a, Fang Lin^b, Jiuyang Lin^{*,b}, Shuaifei Zhao^c, Shishi Yang^d,

Jingwei Hou^e, Shungui Zhou^{*,a}, Bart Van der Bruggen^f

* Corresponding authors. E-mail: <u>linjiuyang@126.com</u> (J. Lin), <u>sgzhou@soil.gd.cn</u> (S. Zhou)

^a Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation,
 College of Resources and Environment, Fujian Agriculture and Forestry University,
 Fuzhou 350002, China

^b Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources, Fuzhou University, Fuzhou 350116, China

^c State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

^d Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^e School of Chemical Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia

^fDepartment of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Fig. S1 Chemical structures of the reactive dyes tested in the study. (A): Reactive orange 1; (B): reactive orange 16; (C): reactive blue 19.

Fig. S2 Digital images of the pristine HPAN substrate and the modified membranes

through bio-inspired co-deposition of the hydrophilic g-C₃N₄ nanosheets. (A): Pristine

HPAN; (B): M0; (C): M1; (D): M2; (E): M3; (F): M4.

Fig. S3 Summary of the filtration performance of the state-of-the-art NF membranes reported in literature in consideration of permeability and MWCO ([1] refers to diquaternized poly(sulfone-co-ethernitrile) random copolymer NF membrane¹; [2] refers to cellulose nanocrystals-based thin-film composite (TFC) NF membrane²; [3] refers to graphene oxide incorporated TFC NF membrane³; [4] refers to phosphorylated chitosan NF membrane⁴; [5] refers to asymmetric cellulose acetate and composite polyamide

NF5; [6] refers to TFC NF membrane mediated by polydopamine⁶; [7] refers to

amphiphilic NF membrane grafted by triethylenetetramine and 2,2,3,4,4,4hexafluorobutyl methacrylate⁷; [8] refers to alginate coated NF membrane⁸; [9] refers to polyethyleneimine based NF membrane⁹; [10] refers to penta-block copolymer based NF membrane¹⁰; [11] refers to zirconia-based NF membrane¹¹; [12] refers to sodium carboxymethyl cellulose based hollow fiber NF membrane¹²; [13] refers to PEEK NF membrane¹³; [14] refers to PAEK-COOH-PEI NF membrane¹⁴; [15] refers to catechinmodified chitosan NF membrane¹⁵; [16] refers to commercial NF 6, NF 2A and NTR-

7450 NF membranes¹⁶).

treatment									
g-C ₃ N ₄ sample –	Chemical composition								
	C (%)	N (%)	O (%)	O/C					
Before treatment	39.6	49.1	11.3	0.29					
After treatment	32.1	42.2	25.7	0.80					

Table S1 Chemical composition of $g-C_3N_4$ nanosheets before and after oxygen plasma

		permeation				
Membrane	Permeability	Dye species	Dye	Salt rejection		Def
	(LMH·bar ⁻¹)		rejection	NaCl	Na ₂ SO ₄	Rei.
TFN-mZIF2 (-)	14.90	Reactive	99.2%	12.0%	90.0%	17
		blue 2				17
TMC-PEI (511 Da)	9.5	Chromotrope	98.8%	49.0%	75.9%	18
		FB				
BHAC-PIP (570	15.3	Methyl blue	98.9%	59.6%	23.4%	19
Da)						
PA-PP (570 Da)	7.0	Reactive	99.6%	65.0%	98.5%	20
		black 5				
VES/AgCl-PEI	10.6	Crystal	99.2%	8.3%	12.8%	21
(681 Da)		violet				
SiO ₂ -PSS/PES	23.3	Reactive	92.0%	3.0%	10.5%	22
(655 Da)		black 5				
TMC-Sericin (880	11.9	Methyl blue	99.5%	40.8%	95.4%	23
Da)						
PEI-g-SBMA/TMC	13.2	Orange GII	90.6%	7.1%	50.4%	24
(-)						
M4 (592 Da)	28.4±1.2	Reactive	99.8%	2.9%	7.6%	This
		blue 19				work

Table S2 Performance comparisons between as-prepared membranes in this work and

 previously reported NF membranes in water permeability, dye retention, and salt

References

- 1 C. Liu, Y. Sun, Z. Chen, and S. Zhang, Sep. Purif. Technol., 2019, 212, 465-473.
- 2 L. Bai, Y. Liu, N. Bossa, A. Ding, N. Ren, G. Li, H. Liang and M.R. Wiesner, *Environ. Sci. Technol.*, 2018, **52**, 11178-11187.
- G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, N. Yusof and Y.H. Tan, *Desalination*,
 2016, 387, 14-24.
- 4 Y. Song, Q. Hu, T. Li, Y. Sun, X. Chen and J. Fan, *Chem. Eng. J.*, 2018, 352, 163172.
- 5 S. Yu, M. Liu, M. Ma, M. Qi, Z. Lü and C. Gao, J. Membr. Sci., 2010, 350, 83-91.

6 Y. Li, Y. Su, J. Li, X. Zhao, R. Zhang, X. Fan, J. Zhu, Y. Ma, Y. Liu and Z. Jiang, J. Membr. Sci., 2015, 476, 10-19.

R. Zhang, Y. Li, Y. Su, X. Zhao, Y. Liu, X. Fan, T. Ma and Z. Jiang, J. Mater.
 Chem. A, 2016, 4, 7892-7902.

8 Y. Du, C. Zhang, Q. Zhong, X. Yang, J. Wu and Z. Xu, *ChemSusChem*, 2017, **10**, 2788-2795.

9 X. Wei, J. Hong, S. Zhu, J. Chen and B. Lv, J. Mater. Sci., 2017, 52, 11701-11714.

10 R. Muppalla, S.K. Jewrajka and A.V.R. Reddy, *Sep. Purif. Technol.*, 2015, **143**, 125-134.

11 Y. Lv, H. Yang, H. Liang, L. Wan and Z. Xu, J. Membr. Sci., 2016, 500, 265-271.

12 S. Yu, Y. Zheng, Q. Zhou, S. Shuai, Z. Lü and C. Gao, *Desalination*, 2012, 298, 49-58.

J. Da Silva Burgal, L. Peeva, P. Marchetti and A. Livingston, *J. Membr. Sci.*, 2015,493, 524-538.

14 C. Liu, W. Bi, D. Chen, S. Zhang and H. Mao, *Chin. J. Chem. Eng.*, 2017, 25, 1685-1694.

15 S. Liu, Z. Wang and P. Song, ACS Sustain. Chem. Eng., 2018, 6, 4253-4263.

16 J. Lin, C.Y. Tang, C. Huang, Y.P. Tang, W. Ye, J. Li, J. Shen, R. Van den Broeck,

J. Van Impe, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis and B. Van der Bruggen, *J. Membr. Sci.*, 2016, **501**, 1-14.

J. Zhu, L. Qin, A. Uliana, J. Hou, J. Wang, Y. Zhang, X. Li, S. Yuan, J. Li, M.Tian, J. Lin and B. Van der Bruggen, ACS Appl. Mater. Interfaces 2017, 9, 1975-1986.

18 X. Wei, S. Wang, Y. Shi, H. Xiang and J. Chen, *Ind. Eng. Chem. Res.*, 2014, 53, 14036-14045.

19 T. Wang, Y. Yang, J. Zheng, Q. Zhang and S. Zhang, J. Membr. Sci., 2014, 448, 180-189.

20 S. Yu, M. Liu, M. Ma, M. Qi, Z. Lü and C. Gao, J. Membr. Sci., 2010, 350, 83-91.

S. Liu, Z. Wang, M. Ban, P. Song, X. Song and B. Khan, J. Membr. Sci., 2018,
566, 168-180.

L. Xing, N. Guo, Y. Zhang, H. Zhang and J. Liu, Sep. Purif. Technol., 2015, 146, 50-59.

23 C. Zhou, Y. Shi, C. Sun, S. Yu, M. Liu and C. Gao, J. Membr. Sci., 2014, 471, 381-391.

24 T. Ma, Y. Su, Y. Li, R. Zhang, Y. Liu, M. He, Y. Li, N. Dong, H. Wu, Z. Jiang, J.
Membr. Sci., 2016, 503, 101-109.