Supporting Information for

Enhanced Adsorption of Cr(VI) on BiOBr under Alkaline

Conditions: Interlayer Anion Exchange

Lixia Jia^{*a*}, Wei Zhou^{*c*}, Xiang Huang^{*d*}, Yizhong Zhang^{*a*}, Qiangying Zhang^{*d*}, Xin Tan

^{a, d}, Tao Yu *, ^{b, e}

^a School of Environmental Science and Engineering, Tianjin University, Tianjin,

300350, P. R. China

^b School of Chemical Engineering and Technology, Tianjin University, Tianjin,

300350, P. R. China

° School of Science, Tianjin University, Tianjin, 300350, P. R. China

^d School of Science, Tibet University, Lhasa, 850000, P. R. China

^e Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

Tianjin, 300072, P. R. China

*Tel: 13752331520

Email address: yutao@tju.edu.cn

Figure S1.(a) XRD pattern of BiOBr. (b) SEM images of BiOBr. (c) Nitrogen

adsorption-desorption isotherm and the corresponding pore size distribution (inset) of

BiOBr. (d) Zeta potential of BiOBr as a function of solution pH.

Figure S2. Effect of pH_i on adsorption of Cr(VI) and total Cr by BiOBr.

Figure S3. High-resolution XPS spectra of Cr 2p of BiOBr-Cr.

Figure S4. The effect of temperature on the adsorption of Cr(VI) at 293.15 K, 303.15

K, 313.15 K , 323.15 K and 333.15 K.

Figure S5. Effects of As(V) and Se(IV) on the adsorption of Cr(VI) on BiOBr.

Figure S6. Effect of pH_i on adsorption of As(V) by BiOBr.

Table S1	Parameters of	f adsorption	kinetics of Cr	(VI) onto BiOBr.
				•	/

	Pseu	udo-first-or	der	Pseudo-second-order equation		
Initial concentration (mg L ⁻¹)	q _e (mg g ⁻¹)	equation k ₁ (min ⁻¹)	<i>R</i> ²	q _e (mg g ⁻¹)	k ₂ (g (mg min) ⁻¹)	R ²
10	11.05	0.67	0.9867	11.39	0.12	0.9995
20	19.44	0.39	0.8967	20.75	0.03	0.9651
30	23.12	0.25	0.8905	24.99	0.01	0.9681
40	26.16	0.25	0.8823	28.23	0.01	0.9639

Table S2 Parameters of adsorption isotherms of Cr(VI) onto BiOBr.

Langmuir			Freundlich				
$K_L(L mg^{-1})$	$q_m(mg g^{-1})$	R^2	$K_F((mg g^{-1})/(mg L^{-1})^{1/n})$	n	R^2		
2.85	32.50	0.9042	21.80	8.91	0.7891		

Table S3 XPS elemental analysis results of BiOBr, BiOBr (in DI water, pH=11) and BiOBr-Cr (in Cr(VI) solution, pH=11).

	Elemental content (wt. %)					
	Bi	0	Br	Cr	С	Ν
BiOBr	12.50	17.09	7.44	0	54.97	8.00
BiOBr(in DI water)	15.38	22.40	5.41	0	50.06	6.75
BiOBr-Cr	8.91	20.56	1.50	1.12	64.05	3.86

Table S4 The adsorption energies of Br⁻, OH⁻, and CrO_4^{2-} on BiOBr and BiOBr₁. $_x(OH)_x$.

Adsorbent	Br ⁻	OH-	CrO4 ²⁻
BiOBr	-4.38 eV	-4.86 eV	-4.72 eV
BiOBr _{1-x} (OH) _x	-4.45 eV	-4.93 eV	-4.89 eV