Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2019

Supplementary Information:
Agricultural soil pore waters reduce copper
oxide nanoparticle-induced root shortening
in wheat
J. M. Hortin, A. J. Anderson, D. W. Britt, A. R. Jacobson, J. E. McLean

Group	Treatment	Wheat	CuO	PcO6	3.4 mM	AgrM	OrgM	GarM
					$Ca(NO_3)_2$	SPW	SPW	SPW
Wheat	1	+	-	-	+	-	-	-
controls	2	+	-	-	-	+	-	-
	3	+	-	-	-	-	+	-
	4	+	-	-	-	-	-	+
CuO NPs	5	-	+	-	+	-	-	-
controls	6	-	+	-	-	+	-	-
	7	-	+	-	-	-	+	-
	8	-	+	-	-	-	-	+
SPW	9	-	-	-	+	-	-	-
controls	10	-	-	-	-	+	-	-
	11	-	-	-	-	-	+	-
	12	-	-	-	-	-	-	+
CuO NPs	13	+	+	-	+	-	-	-
treatments	14	+	+	-	-	+	-	-
	15	+	+	-	-	-	+	-
	16	+	+	-	-	-	-	+

Table S1: Experimental setup for non-PcO6 experiment; + = present and - = absent.

Table S2: Experimental setup for plants with PcO6 colonization; + = present and - = absent.

PcO6 experiment setup										
Group	Treatment Wheat		CuO	PcO6	3.4 mM	AgrM	OrgM	GarM		
					$Ca(NO_3)_2$	SPW	SPW	SPW		
Wheat	1	+	-	+	+	-	-	-		
controls	2	+	-	+	-	+	-	-		
	3	+	-	+	-	-	+	-		
	4	+	-	+	-	-	-	+		
CuO NPs	5	-	+	+	+	-	-	-		
controls	6	-	+	+	-	+	-	-		
	7	-	+	+	-	-	+	-		
	8	-	+	+	-	-	-	+		
SPW	9	-	-	+	+	-	-	-		
controls	10	-	-	+	-	+	-	-		
	11	-	-	+	-	-	+	-		
	12	-	-	+	-	-	-	+		
CuO NPs	13	+	+	+	+	-	-	-		
treatments	14	+	+	+	-	+	-	-		
	15	+	+	+	-	-	+	-		
	16	+	+	+	-	-	-	+		

22 Table S3: Characteristics of soils. Soil samples were collected in 2014 for preliminary 23 experiments in 2015-2016 and tested at a laboratory certified under the North American Proficiency Testing Program for Agricultural Labs. Soils were re-collected in 2016 for use in 24

25

this study. Soil characteristics Soil abbreviation OroM ΔorM

Soil abbreviation	OrgM	AgrM	GarM
	<u>Org</u> anic	<u>Agr</u> icultural	Community
Name origin	farm,	field,	<u>gar</u> den,
	<u>M</u> illville	<u>M</u> illville	<u>M</u> illville
Soil series texture	Millville	Millville	Millville silt
Soli series, texture	silt loam	silt loam	loam
Particle size			
distribution	19/56/26	22/56/23	13/59/28
(% sand/silt/clay)			
Cultivation	organic	commercial	unknown
Cultivation	certified	production	amendments
	continuous	winter	varied
Crop	green	wheat	(community
	cover	wheat	garden)
pН	7.7	7.8	7.8
EC (μ S/cm)	1040	500	600
Phosphorus (mg/kg)	52.1	10.1	19.3
Potassium (mg/kg)	434	111	369
Ammonium (mg/kg N)	2.01	2.43	< 1.25
Nitrate (mg/kg N)	31.8	11.5	10.4
Sulfate (mg/kg S)	6.5	3.6	3.3
Organic matter (% of	5.6	3.0	4.1
Whole soll)			
Cation exchange	20.0	13.8	21.0
Calaium carbonata (0/)	14.6	141	16.1
Calcium carbonate (%)	14.0	14.1	10.1
Saturation point (%)	46.5	41.0	45.5
DTPA – Fe (mg/kg)	9.8	8.95	10.5
DTPA – Cu (mg/kg)	1.44	1.29	2.72
DTPA – Mn (mg/kg)	16.3	14.1	13.8
DTPA – Zn (mg/kg)	3.07	1.66	1.62

Soil name	OrgM	AgrM	GarM
Na (mg/L)	11.8	9.4	27.5
Mg (mg/L)	55.7	17.9	145.9
$Al(\mu g/L)$	8.3	6.9	<4
K (mg/L)	28.7	4.2	299.1
Ca (mg/L)	167.6	97.4	372.3
V (µg/L)	5.2	5.4	7.5
$Cr(\mu g/L)$	9.6	1.1	1.5
Mn (µg/L)	5.5	12.4	118.0
Fe (µg/L)	67.1	14.6	53.9
Co (µg/L)	1.6	1.5	11.1
Ni (µg/L)	5.7	6.7	20.3
Cu (µg/L)	13.4	22.8	48.4
$Zn (\mu g/L)$	51.1	34.1	48.7
As $(\mu g/L)$	7.2	6.1	18.8
Se (μ g/L)	1.0	4.3	1.8
$Sr(\mu g/L)$	668.7	97.7	1124.0
Ba (µg/L)	402.0	161.6	640.4
Gluconate (mg/L)	1.9	3.9	< 0.5
Lactate (mg/L)	< 0.5	< 0.5	< 0.5
Acetate (mg/L)	0.7	< 0.5	< 0.5
Isobutyrate (mg/L)	< 0.5	< 0.5	< 0.5
Butyrate (mg/L)	< 0.5	< 0.5	1.03
Isovalerate (mg/L)	< 0.5	< 0.5	< 0.5
Valerate (mg/L)	< 0.5	< 0.5	< 0.5
Chloride (mg/L)	50.2	5.6	61.6
Nitrite (mg/L N)	5.7	11.8	2.80
Nitrate (mg/L N)	148.6	12.6	573.8
Sulfate (mg/L)	36.8	18.4	194.8
Oxalate (mg/L)	< 0.5	< 0.5	< 0.5
Phosphate (mg/L P)	< 0.5	< 0.5	1.99
Citrate (mg/L)	< 0.5	< 0.5	< 0.5
Alkalinity (mg /L	340	450	490
CaCO ₃)			
EC (µS/cm)	735	391	3380
DOC (mg/L C)	42.7	73.4	305
Humic acids (mg/L C)	<0.8	<0.8	4.3
Fulvic acids (mg/L C)	28.3	38.0	165

Table S4: Full characterization of SPWs. Measurements = average of 3 replicates. "<" = below detection, followed by detection limit.

30 Fig. S2. Root length of wheat plants grown in non-CuO NP treatments (left) and root length of

- 31 wheat plants grown with CuO NPs normalized to the non-CuO NP treatment root length. The
- error bars show 95% confidence intervals (n = 12 per bar) to illustrate the spread of data, but do
- not determine significant differences. Bars with differing letters (A, B, etc.) are statistically
- 34 different (p < 0.05) by Tukey's HSD after two-way ANOVA. All root metals required a
- 35 logarithmic transformation to maintain normal distribution of residuals.

Fig. S3. Root and shoot metal contents in plants grown with CuO NPs as affected by RS (A, C,
D) or *Pc*O6 (B). Bars are average of 12 (A, C, D) or 24 (B) pooled replicates. The error bars
show 95% confidence intervals to illustrate the spread of data, but do not determine significant
differences. Bars with differing letters (A, B, etc.) are statistically different (p < 0.05) by
Tukey's HSD after two-way ANOVA. All root metals required a logarithmic transformation to

- 43 maintain normal distribution of residuals.

52	Table S5 Number of contaminated boxes by RS and presence/absence of wheat, CuO NPs, and
53	<i>Pc</i> O6. Each cell contains a maximum of six boxes.

		Plaı	nted						
	CuO	NPs	Non-Cu	Non-CuO NPs		CuO NPs		Non-CuO NPs	
RS	PcO6	Non-	PcO6	PcO6 Non-		Non-	PcO6	Non-	Totals
		PcO6		PcO6		PcO6		PcO6	
Control	0	5	0	6	0	0	0	3	14
OrgM	0	6	0	6	0	0	0	4	16
AgrM	0	5	1	5	0	0	0	3	14
GarM	0	6	0	6	0	1	0	3	16
Totals	0	22	1	23	0	1	0	13	60

54

55 Discussion of bacterial contamination in this study

56 *Pc*O6 formed wet, orange colonies on Luria Broth (LB) medium, whereas

57 contaminating bacteria took many differing forms. Under these conditions, contamination in

58 the growth boxes could not be completely avoided, even with autoclaving of the boxes and

59 sand before use, thorough surface sterilization of the seeds and initial growth on sterile LB

60 plates, and aseptic techniques. The contamination was spread evenly across RS types (29-

61 35%), but were primarily found in planted samples compared to unplanted samples (48%

62 versus 15%), non-*Pc*O6 samples compared to *Pc*O6 samples (61% versus 1%), and non-CuO

63 NP samples compared to CuO NP samples (39% versus 24%) (Table S5). By a chi-squared

64 test, RS type did not significantly impact contamination rates, but the presence of wheat (p <

65 0.0001), the lack of CuO NPs (p = 0.0287), and the lack of *Pc*O6 (p < 0.0001) increased

66 contamination rates.

67 The even distribution of infection across all RSs indicated the SPWs were not the likely 68 source. Most likely, endophytes living inside the seed grew after transplanting despite the

69 described precautions. Endophytes are common in wheat and often these isolates have

70 biocontrol activity (Díaz Herrera et al. 2016; Comby et al. 2017). The toxicity of CuO NPs to a

variety of microbes (as seen in soils by Frenk et al. 2013, for example) and the competitive

native PcO6 against the microbes explains the lower rates of infection in treatments with each

73 of those two variables.

Fig. S4: pH (A) and DOC (B) in contaminated versus non-contaminated samples without wheat, *Pc*O6, or CuO NPs. Bars represent the mean of measurements and error bars represent Tukey HSD statistical significance. No significant changes occurred between sterile (non-*Pc*O6) and contaminated samples (typically also non-*Pc*O6).

	Malate	0.359											
	Citrate	699.0	0.467										
. c.0	Total DOC	0.561	0.144	0.486									
are K >	DMA	0.246	0.264	0.527	0.126								
relations	Hd	0.141	-0.356	-0.005	0.245	-0.250							
correlations are significant ($p < 0.05$) and bolded, red corr	EC	0.160	-0.398	0.078	0.565	-0.122	0.742						
	Free Cu ²⁺	-0.003	0.051	0.112	0.065	0.526	-0.463	-0.145					
	Dissolved Cu	0.656	0.433	0.720	0.506	0.508	0.001	0.107	0.279				
	Shoot Cu	0.201	-0.057	0.473	0.319	0.363	0.023	0.251	0.436	0.421			
	Root Cu	0.601	0.375	0.522	0.257	0.559	-0.058	0.025	0.221	0.791	0.140		
	Shoot length	0.040	-0.467	-0.078	0.297	-0.212	0.623	0.675	-0.253	-0.031	-0.048	-0.090	
	Root length	-0.365	0.079	-0.454	-0.340	-0.499	-0.132	-0.244	-0.549	-0.571	-0.598	-0.468	-0.090
		gluconate	malate	citrate	Total DOC	DMA	Нd	EC	Free Cu ²⁺	Dissolved Cu	Shoot Cu	Root Cu	Shoot length

Table S6 Correlations of PCA components in planted, non-PcO6 samples with and without CuO NPs. Bolded

Ligand only Cu-Ligand

81 Fig. S5: Root lengths of wheat exposed for 48 h to 1.6 µM Cu and ligand (orange) or ligand 82 only with no Cu (blue). Bars are average of 3 samples and error bars represent the standard 83 error of the mean. NRE is calculated by dividing the (Cu-ligand root -0.75 cm) by (ligand root 84 -0.75 cm), shown in Table 2 of the text. The test was conducted in 1 L solution except for the 85 50 mL samples on the far right. The 50 mL no ligand, malate, and citrate tests were conducted 86 to show that while the smaller volume appeared to influence root length, the same NRE results were obtained in 50 mL as in 1 L. Ligand concentration and calculated Cu speciation are shown 87 88 in Table 2 of the article.