Hollow In_2O_3 (a) $ZnFe_2O_4$ heterojunctions for highly efficient photocatalytic degradation of tetracycline under visible light

Weihua Fei^a, Yun Song^a, Najun Li^{*, a, b}, Dongyun Chen^{a, b}, Qingfeng Xu^{a, b}, Hua Li^a,

^b, Jinghui He^a, Jianmei Lu^{*, a, b}

^a College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China

^b National Center of International Research on Intelligent New Nanomaterials and Detection Technologies in Environmental Protection, Suzhou, Jiangsu 215123, China *Correspondence to: N. J. Li (E-mail: linajun@suda.edu.cn) & J. M. Lu (E-mail: lujm@suda.edu.cn), Tel/Fax: 86 512 65880367

Supporting Information

Fig. S1. XRD pattern of In-MIL-68 prisms.

Fig. S2. TGA curve of In-MIL-68 prisms in air atmosphere with a heating rate of 5 °C/min.

Fig. S3. N_2 sorption isotherms and BET surface area of In_2O_3 . Inset is the corresponding pore size distribution curve.

Fig. S4. EDX spectrum of In₂O₃.

Fig. S5. TGA curve of ZnFe-LDH in air atmosphere with a heating rate of 5 °C/min.

Fig. S6. TEM images of (a) ZnFe-LDH and (b) ZnFe₂O₄.

Fig. S7. EDX spectrum of In_2O_3 @ZnFe₂O₄-500s.

Fig. S8. SEM images of (a, b) In₂O₃@ZnFe₂O₄-400s, (c, d) In₂O₃@ZnFe₂O₄-600s.

Fig. S9. N_2 sorption isotherms and BET surface area of $ZnFe_2O_4$. Inset is the corresponding pore size distribution curve.

Fig. S10. N₂ sorption isotherms and BET surface area of In_2O_3 @ZnFe₂O₄-500s. Inset is the corresponding pore size distribution curve.

Fig. S11. (a) Tauc plots and (b) Valence band XPS spectra of In_2O_3 and $ZnFe_2O_4$.

Table S1.	The zeta potential	and the maximum	UV-vis absorption	peak (λ _{max})	of TC
	p			P • • • • • • • • • • • • • • • • • • •	

under	different	nH
unuor	uniterent	pm.

рН	3	5	7	9	11
zeta potential (mV)	12.1	14.7	-1.4	-9.3	-36.2
λ_{max} (nm)	357	357	357	363	377

Photocatalysts	Pollutant	Concentration	Reaction time	Catalyst dosage	Removal rate (%)	Ref.	
		(mg/L)	(min)	(min) (g/L)			
In ₂ O ₃ @ZnFe ₂ O ₄	TC	150	60	0.5	90	Our work	
Carbon dots/MoO ₃ /g-C ₃ N ₄	TC	20	90	0.6	88.4	1	
Ag@g-C ₃ N ₄ @BiVO ₄	TC	20	60	0.3	82.75	2	
Ag ₃ PO ₄ /CuBi ₂ O ₄	TC	20	60	0.5	75	3	
type II AgI/CuBi ₂ O ₄	TC	10	60	0.5	80	4	
Z-scheme AgBr/CuBi ₂ O ₄	TC	10	60	0.5	90	4	
Ag/AgCl/Bi2MoO6	Rhb	10	60	1.0	90.9	5	

Table S2. Comparison of different contaminants degradation time and efficiency for In₂O₃@ZnFe₂O₄ with previously reported catalysts.

Fig. S12. LC-MS spectra at 0 min (a), 20 min (b), 40 min (c) and 60 min (d).

Fig. S13. TC photocatalytic degradation pathway on In₂O₃@ZnFe₂O₄.

Fig. S14. (a). TEM image of $In_2O_3@ZnFe_2O_4$ -500s after photocatalytic process. (b). Cycling runs for the degradation of TC (pH=11, TC=50 mg/L, $In_2O_3@ZnFe_2O_4$ -500s = 0.5 g/L), (c). XRD patterns and XPS spectra of $In_2O_3@ZnFe_2O_4$ -500s before and after 10 times photocatalytic reactions: (d) survey , (e) In 3d, (f) Zn 2p, (g) Fe 2p and (h) O 1s, (i). Magnetic hysteresis loop of $In_2O_3@ZnFe_2O_4$ -500s (insert: the solution before and after magnetic separation).

References

- Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv and G. Liu, Construction of carbon dots modified MoO₃/g-C₃N₄ Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline, *Applied Catalysis B: Environmental*, 2018, 229, 96-104.
- F. Chen, Q. Yang, Y. Wang, J. Zhao, D. Wang, X. Li, Z. Guo, H. Wang, Y. Deng, C. Niu and G. Zeng, Novel ternary heterojunction photocoatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant, *Applied Catalysis B: Environmental*, 2017, 205, 133-147.
- 3. W. Shi, F. Guo and S. Yuan, In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation, *Applied Catalysis B: Environmental*, 2017, **209**, 720-728.

- 4. F. Guo, W. Shi, H. Wang, M. Han, W. Guan, H. Huang, Y. Liu and Z. Kang, Study on highly enhanced photocatalytic tetracycline degradation of type II AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts, *Journal of Hazardous Materials*, 2018, **349**, 111-118.
- 5. J. Zhang, C. Niu, J. Ke, L. Zhou and G. Zeng, Ag/AgCl/Bi2MoO6 composite nanosheets: A plasmonic Z-scheme visible light photocatalyst, *Catalysis Communications*, 2015, **59**, 30-34.