1	Supporting Information
2	
3	
4	Highly Crystalline Lithium Chloride-Intercalated Graphitic Carbon
5	Nitride Hollow Nanotubes for Effective Lead Removal
6	
7	Ying Zhou, ^a Changzhong Liao, ^{*a, b} Yiang Fan, ^a Shengshou Ma, ^b Minhua Su, ^c
8	Zhengyuan Zhou, ^d Ting-Shan Chan, ^e Ying-Rui Lu, ^e Kaimin Shih ^{*a}
9	
10 11	^a Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, HKSAR, China
12	^b Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and
13	Management, Guangdong Institute of Eco-Environmental Science & Technology,
14	Guangzhou, China
15	^c Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and
16	Resources, School of Environmental Science and Engineering, Guangzhou University,
17	Guangzhou, China
18	^d School of Materials Science and Technology, Jingdezhen Ceramic Institute,
19	Jingdezhen, China
20	^e National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu,
21	Taiwan, ROC
22	
23	
24	*Corresponding author:
25	Professor Kaimin Shih, E-mail: <u>kshih@hku.hk;</u> Tel: +852 28591973; Fax: +852
26	25595337.
27	Dr. Changzhong Liao, E-mail: liaocz29@connect.hku.hk
28	
29	
30	
31	(15 pages including 2 texts, 6 tables and 10 figures)

32	List of Supporting Information
33	Text S1. Methods and calculations for batch adsorption tests.
34	Text S2. Definitions and calculations of Langmuir and Freundlich models.
35	Table S1. Physicochemical properties of the synthesized g-C ₃ N ₄ and LiCl-intercalated graphitic
36	carbon nitrides.
37	Table S2. Surface element composition of g-C ₃ N ₄ and LiCl-CN-4h before and after Pb
38	adsorption by XPS.
39	Table S3. Kinetic parameters for Pb(II) adsorption on LiCl-CN samples at 298.15K.
40	Table S4. Langmuir and Freundlich Parameters for Pb(II) Adsorption on LiCl-CN-4h.
41	Table S5. Thermodynamic parameters of Pb(II) adsorption on LiCl-CN-4h at various
42	temperatures (298.15K, 308.15K and 318.15K).
43	Table S6. Chemical compositions obtained by EDX for the LiCl-CN samples
44	Figure S1. Crystallinity of the LiCl-CN samples.
45	Figure S2. SEM (a) and TEM (b) images of bulk g-C ₃ N ₄ .
46	Figure S3. SEM images of the LiCl-CN-4h sample surface.
47	Figure S4. Elemental mapping of LiCl-CN-4h (a) and bulk g-C ₃ N ₄ (b).
48	Figure S5. XPS high resolution spectra of Li 1s before and after Pb ²⁺ adsorption on LiCl-CN-
49	4h.
50	Figure S6. Zeta-potential of bulk g-C3N4 and LiCl-CN-4h as a function of pH values.
51	Figure S7. High resolution spectra of C 1s and N 1s before (a and b) and after (c and d) Pb
52	adsorption on LiCl-CN-4h.
53	Figure S8. Infrared spectra of the as-prepared (a) and Pb ²⁺ -adsorbed LiCl-CN-4h (b).
54	Figure S9. TEM-EDX line-scan profiles of the elements (a), together with the individual
55	element distribution of C (b), N (c), Cl (d) and Pb (e) across the hollow tube after adsorption.
56	Figure S10. Pb L3-edge XANES spectra for samples after Pb ²⁺ treatment.

57 **Text S1.** Methods and calculations for batch adsorption tests.

58 The sorption percentage (%) and the adsorption capacity (q_e) were calculated by the

59 following equations:

60 Adsorption (%) =
$$\frac{(c_0 - c_e)}{c_0} \times 100\%$$
 (1)

61
$$q_e = \frac{(C_0 - C_e) \times V}{m}$$
(2)

62 where C_0 and C_e (mg/L) are the initial and equilibrium concentrations with adsorbents 63 in solution, q_e (mg/g) is the equilibrium adsorption capacity; V (L) is the Pb(II) solution 64 volume and m (g) is the weight of the adsorbents.

65

To investigate the effect of cation competitiveness on Pb(II) adsorption, 0.01g LiCl-66 67 CN powders were added into 50mL solution containing 50 mg/L Pb(II) ions and the 68 competitive cations (including Ca(II) or Mg(II)) with different concentrations. The 69 competitive cation solutions were prepared by calcium nitrate tetrahydrate (99%, 70 Sigma-Aldrich) and magnesium nitrate hexahydrate (99%, Sigma-Aldrich). The testing tubes were then transferred into an incubator shaker and shaken under 200 rpm for 48h, 71 then the equilibrium Pb (II), the final Ca (II) or Mg (II) concentrations were measured 72 73 accordingly. All the experiment data were the average of the duplicate determinations 74 and the errors were within 5%.

76 **Text S2.** Definitions and calculations of Langmuir and Freundlich models.

77 The as-obtained adsorption data were then fitted to Langmuir and Freundlich models,

78 and the model equations are given as follows:

79 Langmuir model:

80
$$\frac{C_e}{q_s} = \frac{1}{q_{s,max} \times K_L} + \frac{C_e}{q_{s,max}}$$
(3)

81 Freundlich model:

$$\log q_s = \log K_F + \frac{1}{n} \times \log C_e \tag{4}$$

83 where C_e is the equilibrium concentration $(mg \cdot L^{-1})$, q_s is adsorbed Pb(II) per unit weight 84 of sorbents at equilibrium state $(mg \cdot g^{-1})$, K_L $(L \cdot mg^{-1})$ and K_F $(mg^{1-n}L^ng^{-1})$ are the 85 Langmuir and Freundlich constant, respectively, n is relevant to the adsorption intensity 86 and $q_{s,max}$ $(mg g^{-1})$ refers to the maximum adsorption capacity of the material.

Table S1. Physicochemical properties of the synthesized g-C₃N₄ and LiCl-intercalated

graphitic carbon nitrides.						
	BET specific surface	Pore volume	Average pore size			
	area (m ² /g)	(cm^3/g)	(nm)			
Bulk g-C ₃ N ₄	5.2516	0.0375	24.2161			
LiCl-CN-0.5h	16.4695	0.0766	24.9606			
LiCl-CN-1h	16.2284	0.0538	23.4909			
LiCl-CN-2h	30.2520	0.0731	10.6883			
LiCl-CN-4h	36.5378	0.0914	9.9970			

Table S2. Surface element composition of g-C₃N₄ and LiCl-CN-4h before and after

92	Pb adsorption by XPS						
		С	Ν	0	Cl	Li	Pb
		(atom.%)	(atom.%)	(atom.%)	(atom.%)	(atom.%)	(atom.%)
•	g-C ₃ N ₄ -before	42.50	55.25	2.25			0
	g-C ₃ N ₄ -after	49.64	43.42	6.82			0.12
	LiCl-CN-4h before	44.55	35.19	8.72	2.68	8.86	0
	LiCl-CN-4h after	43.67	35.76	9.53	2.32	7.68	1.05

Pseudo-First-Order			Pseudo-Second-Order		
k ₁	n ²	q _{1,cal}	k ₂	D ²	q _{2,cal}
(h ⁻¹)	K²	$(mg \cdot g^{-1})$	$(g \cdot mg^{-1} \cdot h^{-1})$	K²	$(mg \cdot g^{-1})$
1.7226	0.9307	92.03	0.0278	0.9983	95.79
2.2169	0.9428	108.34	0.0081	0.9910	123.92
2.5465	0.8621	130.60	0.0070	0.9974	151.52
3.8988	0.8629	138.43	0.0078	0.9985	160.77
	k ₁ (h ⁻¹) 1.7226 2.2169 2.5465 3.8988	$\begin{array}{c c} k_1 & \\ R^2 \\ (h^{-1}) & \\ \hline 1.7226 & 0.9307 \\ \hline 2.2169 & 0.9428 \\ \hline 2.5465 & 0.8621 \\ \hline 3.8988 & 0.8629 \end{array}$	$\begin{tabular}{ c c c c c c } \hline k_1 & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table S3. Kinetic parameters for Pb(II) adsorption on LiCl-CN samples at 298.15K.

Table S4. Langmuir and Freundlich parameters for Pb(II) adsorption on

LiCl-CN-4h.

	Langmuir			Freundlich		
	K_L	$C_{s,max}$	D ²	$K_{\rm F}$	n	D ²
	$(L \cdot mg^{-1})$	$(mg \cdot g^{-1})$	К	$(mg^{(1-1/n)}L^{1/n}g^{-1})$	11	K
298.15K	0.5524	172.41	0.9941	124.39	13.21	0.8200
308.15K	0.4898	208.33	0.9943	110.61	6.33	0.8470
318.15K	1.5666	212.77	0.9982	175.83	19.38	0.7654

Table S5. Thermodynamic parameters of Pb(II) adsorption on LiCl-CN-4h at various 106

M^0 (kI·mol ⁻¹)	ΔS^0 (I-mol ⁻¹ K ⁻¹)	$\Delta G^0 (kJ \cdot mol^{-1})$			
		298.15K	308.15K	318.15K	
37.84	149.01	-6.74	-7.69	-9.74	

Table S6. Chemical compositions obtained by EDX for the LiCl-CN samples

	C (atom.%)	N (atom.%)	Cl (atom.%)
LiCl-CN-0.5h	44.23	53.87	1.90
LiCl-CN-1h	41.81	55.95	2.25
LiCl-CN-2h	43.29	54.18	2.53
LiCl-CN-4h	45.25	51.81	2.94

Figure S2. SEM (a) and TEM (b) images of bulk $g-C_3N_4$.

Figure S3. SEM images of the LiCl-CN-4h sample surface.

123 Figure S4. Elemental mapping of LiCl-CN-4h (a) and the bulk $g-C_3N_4$ (b).

Figure S6. Zeta-potential of bulk g-C₃N₄ and LiCl-CN-4h as a function of pH values.

S14

143 Figure S8. Infrared spectra of the as-prepared (a) and Pb²⁺-adsorbed LiCl-CN-4h (b).

