Supplementary information

Response mechanisms of photosynthesis in typical C3 and C4 plants upon La₂O₃ nanoparticle exposure

Yinglin Liu,^a Le Yue,^a Chuanxi Wang,^a Xiaoshan Zhu,^b Zhenyu Wang*^a and Baoshan Xing^c

^a Institute of Environmental Processes and Pollution Control, and School of

Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.

^b Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.

^c Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA
01003, USA.

*Corresponding author.

E-mail address: wang0628@jiangnan.edu.cn (Dr. Zhenyu Wang).

Fig. S1. Transmission electron microscopy (TEM) image of La₂O₃ NPs.

Fig. S2. The shoot and root growth curves of soybean (A and B) and maize (C and D) during 6-day La₂O₃ NPs exposure. Values represent mean \pm SD (n = 6). Different letters indicate significant differences between the treatment means (p < 0.05). The letters are only showed when differences among means are statistically significant.

Fig. S3. Root morphology of soybean exposed La₂O₃ NPs (A: control, B: 10 mg L⁻¹ La₂O₃ NPs exposure). And morphological parameters, including root length (C), surface area (D), volume (E) and root tips (F). Different letters indicate significant differences between the treatment means (p < 0.05).

Fig. S4. Root morphology of maize exposed La₂O₃ NPs (A: control, B: 10 mg L⁻¹ La₂O₃ NPs exposure). And morphological parameters, including root length (C), surface area (D), volume (E) and root tips (F). Different letters indicate significant differences between the treatment means (p < 0.05).

Parameter	The description of chlorophyll a fluorescence parameters	
ABS/RC	The light energy absorbed per unit reaction center (RC)	
TRo/RC	Energy captured by the unit RC for Q _A reduction	
DIo/RC	Energy dissipated per unit RC	
ETo/RC	Energy captured by the unit RC for electron transport	
ABS/CSm	The light energy absorbed per unit area, which is similar to Fm	
TRo/CSm	The light energy captured per unit area for electron transport	
DIo/CSm	Thermal energy dissipation per unit area	
ETo/CSm	Quantum yield for electron transport per unit area	
φ(Po)	Maximum photochemical efficiency, which is similar to Fv/Fm	
φ(Εο)	Quantum yield for electron transport	
φ(Do)	Quantum ratio for thermal energy dissipation	
ψο	The efficiency of electron moves beyond Q _A -	
Sm	The energy required for Q_A reducing completely, which reflects the volume of PQ pool	
Ν	The amount of reduction of QA, which indicates QA ability to electron transport	
Мо	The initial slope of OJIP curve, which indicates the rate of QA reducing	
PIabs	Performance index for energy conservation	

Table S1. The glossary of terms of chlorophyll a fluorescence parameters.¹

Accession no	Target gene	Primer sequences
X 15238	ZmPEPc, forward	5'- AGCCTTCAGAACCGATGAAATC -3'
	ZmPEPc, reverse	5'- CATCCCATAGCGCATTTCG -3'
Z 11973	ZmRbcL, forward	5'-AAAGCCTTACGCGCTCTACGT-3'
	ZmRbcL, reverse	5'-CGGACCTTGGAAAGTTTTTGAA-3'
D 00170	ZmRbcS, forward	5'-ATGTGGAAGCTGCCCATGTT-3'
	ZmRbcS, reverse	5'-GCCTCCTGCAGCTCCTTGTA-3'
J 01238	Aktin, forward	5'-GATGGTCAGGTCATCACCATTG-3'
	Aktin, reverse	5'-AACAAGGGATGGTTGGAACAAC-3'

Table S2. The sequences of specific primers used for the qRT-PCR analysis.²

References

- R. J. Strasser, M. Tsimilli-Michael, S. Qiang and V. Goltsev, Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant *Haberlea rhodopensis*, *Biochim. Biophys. Acta*, 2010, **1797**, 1313-1326.
- A. Sezgin, C. Altuntas, M. Demiralay, S. Cinemre and R. Terzi, Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought, *J. Plant Physiol.*, 2019, 232, 65-73.